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Abstract

We characterize optimal monetary policy under state-dependent pricing. The framework
gives rise to nonlinear inflation dynamics: The flexibility of the price level increases after
large shocks due to an endogenous rise in the frequency of price changes. In response to
large cost-push shocks, optimal policy leverages the lower sacrifice ratio to curb inflation.
When faced with total factor productivity shocks, an efficient disturbance, the optimal policy
commits to strict price stability. The optimal long-run inflation rate is just above zero.

JEL codes: E31, E32, E52

Keywords: State-dependent pricing, large shocks, nonlinear Phillips curve, optimalmonetary
policy

We are grateful to Guido Ascari, Vladimir Asryan, Andres Blanco, Davide Debortoli, Eduardo Engel, Aurélien
Eyquem, Jordi Galí, Erwan Gautier, Mark Gertler, Mishel Ghassibe, Basil Halperin, Francesco Lippi, Albert Marcet,
Alberto Martin, Virgiliu Midrigan, Giorgio Primiceri, Xavier Ragot, Morten Ravn, Tom Sargent, Edouard Schaal,
Raphael Schoenle, Mathias Trabandt and Jaume Ventura, as well as to participants at various conferences and
seminars for their comments and suggestions. The views expressed here are those of the authors only and do not
necessarily represent those of the Bank of Spain, the Central Bank of Chile, the ECB, or the Eurosystem. Previous
version has been circulated under the subtitle “Optimal Monetary Policy under a Nonlinear Phillips Curve”.



1. Introduction

What is the optimal design of monetary policy? The traditional answer offered by the New Key-
nesian literature relies on the price settingmodel by Calvo (1983), which disregards endogenous
variation in the frequency of price changes: firms update prices at random times irrespective
of macroeconomic conditions.1 In contrast, a rapidly growing literature on state-dependent
price setting, sometimes referred to as “menu cost models”, recognizes that firms decide when
to adjust prices endogenously, taking into account monetary policy. High inflation periods,
such as the recent inflation surge episode, have forcefully illustrated that the frequency of
price changes is indeed responsive to macroeconomic conditions: in the U.S., it more than
doubled at the 2022 inflation peak.2 Yet, the normative aspects of these state-dependent models
have received limited attention. To bridge this important gap, our paper characterizes optimal
monetary policy under commitment in the canonical menu cost model of Golosov and Lucas
(2007) and shows robustness in the CalvoPlus model of Nakamura and Steinsson (2010).

Our analysis arrives at a novel insight: optimal policy leans against inflation dispropor-
tionately strongly in response to large cost-push shocks, which exert upward pressure on the
repricing frequency – a “strike while the iron is hot” policy. The reasons are twofold. First, the
cost of the anti-inflationary policy in terms of output is smaller when the frequency of price
changes increases in response to the shocks – as the price level becomes more flexible, the
sacrifice ratio falls. Second, as we explain below, in our state-dependent framework the relative
importance of inflation versus output in the central bank’s objective stays close to that in the
Calvo model. At the same time, as we show analytically, optimal policy requires full inflation
stabilization after total factor productivity shocks – a version of the “divine coincidence” result
after efficiency shocks, as in the canonical Calvo model.

Our baseline state-dependent price setting model closely follows the seminal paper of
Golosov and Lucas (2007). In the model, a representative household consumes a continuum of
differentiated goods and supplies labor in a centralized, frictionless market. Each consumption
good is produced by a single firm with labor as the only input. Production technology is subject
to aggregate productivity and cost-push shocks, and idiosyncratic quality shocks.3 Firms must
incur a small, fixed, “menu cost” to adjust their prices. Thus, firms’ pricing decisions are
characterized by an (S, s) rule: When prices are within an endogenous band around the optimal
reset price, firms keep them constant; otherwise, they pay the menu cost and update their price.
The central bank sets the nominal interest rate.

We study the optimal design of monetary policy in the model. To this end, we propose a
new algorithm to solve the Ramsey problem nonlinearly, so that it is suitable for assessing
the impact of large aggregate shocks. In particular, we approximate the value and distribution
functions over the endogenously determined relevant range and solve the set of equilibrium
conditions under perfect foresight over the sequence space. We calibrate the model parameters

1Woodford (2003); Galí (2008)
2See Montag and Villar (2023). The empirical relationship between inflation and frequency has been well

established both in the U.S. and on other countries. The literature review below lists references.
3We depart from the Golosov and Lucas (2007) model in this regard, which, instead of idiosyncratic quality

shocks, assumes productivity shocks. This facilitates the computation, while its implications are innocuous (see
also Midrigan 2011; Alvarez et al. 2021).
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to match the monthly frequency of the price changes in the U.S. before the inflation surge4,
as well as a 20% frequency level accompanying a 10% inflation rate as experienced during
the inflation surge of 2022-2023 (Montag and Villar 2023). We contrast the implications of our
state-dependent model with those of a time-dependent Calvo model.5

Themodel economy is subject to three welfare-relevant distortions. The first two are caused
by actual markups deviating from the efficient markup: the first distortion is caused by the
averagemarkup; and the second by the dispersion ofmarkups. The third distortion is the resource
costs related to price adjustment. The distortion caused by average markup is conventional and
is present both in our baseline model and in the canonical Calvo model.6 It incentivizes the cen-
tral bank to minimize the variation, caused by aggregate shocks, in the average markup, which
it can affect due to price rigidities. The behavior of the second and third distortions is distinct
in the two frameworks. In our framework, aggregate shocks can reduce markup dispersion
on impact, as new adjusters are selected from those with the most misaligned markups; while
aggregate shocks increase markup dispersion in the Calvo framework. Furthermore, resource
costs of price changes become a relevant factor in our framework, while they are always zero
in the Calvo framework by construction. The policy maker’s task is to minimize the effect of
those distortions.

We find that optimal monetary policy should lean more aggressively against inflation after
large cost-push shocks when the frequency of price changes is endogenously high than either
after a small shock or in a fixed-frequency Calvo setting: it is optimal to “strike while the iron is
hot”.7 This nonlinearity establishes a key difference between our model and the standard Calvo
model. Our calibration implies that this new policy prescription is relevant for the 2022-2023
inflation surge: Already for inflation and frequency values of the magnitude observed during
this period, optimal policy requires a significantly more aggressive anti-inflationary stance
than for a small shock or under Calvo pricing.

What explains themodified policy prescription? To gain insight into this result, we introduce
a simplified model. In the simplified model, we introduce a sub-period of night, when only the
firms are awake, andwhen the prices are fully flexible. The assumption improves the tractability
of the model by turning the dynamic problem of the firms into a series of static problems, but it
keeps the key underlying channel active: the repricing rate responds endogenously to aggregate
shocks.

In the simplified model, both welfare and the planner’s choice set can be expressed in
the space of (i) the output gap, which measures the distance between output and its efficient
level, and (ii) inflation, as is conventional in optimal monetary policy analysis under the Calvo
price setting. Welfare depends on these two variables because the output gap is related to the
average markup and inflation is related to the markup dispersion and the resource costs of

4See, for example, Nakamura and Steinsson (2008).
5The Calvo model is recalibrated to generate the same price-flexibility as our baseline model for small shocks

(Auclert et al. 2024). This recalibration compensates for the endogenous “selection” of large price changes, which
substantially raises the flexibility of the aggregate price level.

6As is standard in optimal monetary policy analysis, we offset steady-state average markup distortion due to the
market power with suitable subsidies. We reintroduce steady-state markup distortions only to analyze the impact of
time-inconsistency.

7We analyze timeless Ramsey policy á la Woodford (2003).
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price changes. The choice set can also be expressed in the space of inflation and output gap
– and takes the form of a nonlinear Phillips curve. It is nonlinear because inflation becomes
more sensitive to changes in the output gap as large shocks raise the frequency of price changes
and, thereby, increase price flexibility.8

Optimal policy leans more aggressively against inflation after large cost-push shocks than
after small shocks in the simplified model, just as in the full model. In the simplified model,
the relationship between the output gap and inflation under optimal policy can be illustrated
by a structural “target rule.” The optimal “strike while the iron is hot” policy translates into
a nonlinear target rule: larger output gaps are associated with relatively lower inflation rates
than smaller output gaps. This is in stark contrast to the corresponding target rule in the Calvo
framework, which is almost linear.

To understand the key driving forces behind this policy prescription, it is instructive to start
with the question of why the target rule is almost linear in the Calvo model. There, welfare
can be well approximated by a quadratic function of the output gap and the inflation with
a fixed weight9, while the Phillips curve is almost linear. Optimal policy thus maximizes a
near-quadratic objective subject to the near-linear Phillips curve. The resulting policy is thus
near linear.

Why is the same relationship between inflation and output gap nonlinear under state-
dependent pricing? We find that this is almost exclusively driven by the nonlinear trade-off
between inflation and output gap – the nonlinear Phillips curve. Intuitively, reducing inflation
in this framework is cheaper after large shocks, when the frequency is higher and the price
level is more flexible, that is, when the sacrifice ratio is low. To show that this is the dominant
driving force, we combine the nonlinear Phillips curve of our simplified framework with a
counterfactual quadratic welfare function approximating the Calvo model and derive a counter-
factual target rule. We show that the ensuing target rule is close to the true target rule and is
similarly characterized by the “strike while the iron is hot” policy. As the relative welfare weight
of inflation and output gap is independent of the shock in this counterfactual by construction,
the results here are clearly driven by the shape of the Phillips curve – the nonlinear sacrifice
ratio.10 This result generalizes to the full model. Therefore, we conclude that the key driving
force behind the aggressive anti-inflationary stance after large shocks is the lower sacrifice
ratio.

We establish a series of additional results in the full model. First, we show that the model
features a slightly positive Ramsey optimal steady-state inflation rate, at around 0.07% per
annum. This contrasts with the standard Calvo model, where optimal inflation is exactly zero.
In our menu cost model, slightly positive steady state inflation reduces the frequency and thus
helps firms to economize on costly price adjustments. In particular, it counterbalances the

8Other papers point to complementary reasons why the Phillips curve can be nonlinear, such as state-dependent
wage rigidity (Benigno and Eggertsson 2023) or Kimball aggregators (Erceg et al. 2024).

9Woodford (2003) shows that welfare can be approximated by a weighted sum of squares of output gap and
inflation, the weight being determined by structural parameters of the model. This approximation applies in the
neighborhood of an efficient steady state up to a second order, i.e. for small shocks. We find that this approximation
works well numerically also for large shocks.

10The deviation of the true welfare from the quadratic approximation actually somewhatmitigates the nonlinearity
of the true target rule, but its impact is quantitatively small.
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impact of too frequent price increases relative to price decreases, which is a consequence of the
asymmetry of the profit function: firms dislike more negative price misalignments when the
demand for their product is high, relative to positive misalignments when the demand is low.
Second, we also find that for small cost-push shocks, optimal policy “leans against the wind”: the
central bank temporarily drives output below its efficient level to contain the inflationary impact
of a positive cost-push shock. This is very similar, though not identical, to the Calvo model.
However, the reason is different. In the Calvo model, the key distortion caused by inflation is
the markup dispersion, while in our baseline model it is the resource costs due to menu costs.
Third, we show analytically that the optimal response to TFP shocks is characterized by the
“divine coincidence” (Blanchard and Galí 2007). In other words, optimal policy stabilizes both
inflation and the output gap. Finally, we show that the well-known time inconsistency problem
of optimal monetary policy is also present in our menu cost model, although it is attenuated
relative to Calvo. In both models, when the steady state is inefficient, monetary policy has
the incentive to stimulate output via an unexpectedly easy policy (Galí 2008). However, in the
menu cost model, such a policy is less effective on output and more inflationary because the
ensuing increase in the repricing rate raises the flexibility of the aggregate price level. The
time-inconsistent motive to ease is thus considerably weaker.

Our results are robust to alternative parameterizations, and also hold in the “CalvoPlus”
model (Nakamura and Steinsson 2010). The latter framework assumes that the price adjustment
cost is stochastic: it takes a positive value with some exogenous probability, and it is zero
otherwise. This model can better match the fraction of small price changes in the data (see
also Midrigan 2011; Alvarez et al. 2021), and can achieve a realistic degree of monetary non-
neutrality for small shocks. However, as we show, the model also prescribes a more aggressive
anti-inflationary stance after large cost-push shocks than after small shocks, with an even higher
nonlinearity than our baseline. This is primarily because the sacrifice ratio exhibits even more
nonlinearity in this framework than in our baseline.

Related literature. Our paper builds on the seminal article by Golosov and Lucas (2007). They
propose a menu cost model (Barro 1972; Sheshinski and Weiss 1977; Caballero and Engel 1993)
that provides a micro-founded state-dependent alternative to the canonical time-dependent
Calvo (1983)model. The frameworkhas become thebackboneof a positive literature (Gertler and
Leahy 2008; Midrigan 2011; Costain and Nakov 2011; Alvarez et al. 2016; Auclert et al. 2024)11 and
is shown to describe firms’ price-setting behavior well in diverse environments with both low
and high inflation (Nakamura and Steinsson 2008; Gagnon 2009; Alvarez et al. 2019; Nakamura
et al. 2018), and as response to large aggregate shocks (Karadi and Reiff 2019; Alexandrov 2020;
Auer et al. 2021).

To the best of our knowledge, our paper is the first to solve for optimal monetary policy in
this canonical menu cost model. Its main distinctive feature is the endogeneity of the extent

11A key question of the literature is the relationship between monetary non-neutrality and the distribution of
price changes at the micro level. This is not the focus of our paper. We show that our results on optimal monetary
policy after large shocks are robust across models with very different implications about monetary non-neutrality,
like the Golosov and Lucas (2007) model on the one hand and the CalvoPlus model of Nakamura and Steinsson (2010)
on the other.
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of price stickiness: the frequency of price changes can vary with macroeconomic conditions
and thus it is endogenous to shocks and potentially to monetary policy itself. This is different
from the canonical textbook analysis of optimal monetary policy based on Calvo (1983), such
as in Woodford (2003) and Galí (2008). Changes in frequency has been documented both after
large aggregate shocks (Karadi and Reiff 2019; Alvarez and Neumeyer 2020; Auer et al. 2021;
Gagliardone et al. 2025; Gautier et al. 2025), and in high-inflation environments (Gagnon 2009;
Alvarez et al. 2019; Nakamura and Steinsson 2018), and has received new empirical support
following the recent U.S. inflation surge (Montag and Villar 2023; Cavallo et al. 2024; Blanco
et al. 2024a). Variation in frequency implies a state-dependent, nonlinear relationship between
inflation and the output gap (Vavra 2014; Blanco et al. 2024b). Our conclusion prescribing an
aggressive anti-inflationary policy after large shocks is a direct consequence of this nonlinearity,
which implies a favorable inflation-output trade-off that optimal policy should exploit.

Solving dynamic optimal policy in response to aggregate shocks in this framework com-
plements previous research on optimal monetary policy, which has restricted its attention to
menu cost settings with a representative firm and small aggregate shocks (Nakov and Thomas
2014), sector-specific productivity shocks (Caratelli and Halperin 2023) or to optimal steady-state
inflation (Adam and Weber 2019; Blanco 2021; Nakov and Thomas 2014).12

This paper proposes a new algorithm to solve Ramsey optimal policy in heterogeneous-agent
models, building on González et al. (2024). The algorithm (i) makes the infinite-dimensional
planner’s problem finite-dimensional by approximating the infinite-dimensional value and
distribution functions by piece-wise linear functions on a grid; (ii) accounts for the discrete
price-adjustment choice using an endogenous grid; (iii) derives the FOCs of the planner’s
problem by symbolic differentiation; and (iv) solves the resulting set of equilibrium conditions
nonlinearly under perfect foresight over the sequence space. Our approach complements
other methods to solve for Ramsey policy in heterogeneous-agent models (Bhandari et al. 2021;
Le Grand et al. 2022; Dávila and Schaab 2022; Nuño and Thomas 2022; Smirnov 2022).

2. Model

In the baseline economy a representative household consumes a basket of differentiated goods
and supplies labor; monopolistic firms produce using a technology that is affected by by both
aggregate and idiosyncratic shocks and must pay a fixed menu cost to change prices; and a
central bank sets interest rates. Time is discrete and there is no aggregate uncertainty. We
compare our baseline economy to a Calvo economy, which is identical to our baseline except
firms adjust their prices with an exogenous probability.

12Nakov and Thomas (2014) find no significant difference between Calvo and a randommenu cost model. Caratelli
and Halperin (2023) show that, in the face of sector-specific shocks, optimal policy can be characterized as nominal
wage targeting.
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2.1. Households

A representative household consumes Ct, supplies working hours Nt and saves in one-period,
nominal bonds Bt, which are in zero net supply. The household maximizes

max
Ct ,Nt ,Bt

∞
∑

t=0
βtu(Ct,Nt), (1)

subject to

PtCt +QtBt + Tt = Bt−1 +WtNt +Dt, (2)

where Tt are lump-sum taxes,Wt is the nominal wage, Dt are lump-sum dividends from firms,
and Qt ≡ e−it is the price of the nominal bond and it is the nominal interest rate. Aggregate
consumption Ct is

Ct = {∫
1

0
[At( j)Ct( j)]

ϵ−1
ϵ dj}

ϵ
ϵ−1

, (3)

where Ct( j) is the quantity of product j ∈ [0, 1] and At( j) is the idiosyncratic quality of product
j, which follows a random walk in logs with volatility σ:

logAt ( j) = logAt−1 ( j) + σεt ( j) , (4)

εt is an i.i.d Gaussian innovation and σ is a parameter.
The demand for product j is

Ct( j) = At( j)ϵ−1 (
Pt( j)
Pt
)

−ϵ
Ct (5)

where Pt( j) is the price of product j, and the aggregate price index is

Pt =
⎡
⎢
⎢
⎢
⎢
⎣

∫

1

0
(
Pt( j)
At( j)

)

1−ϵ
dj
⎤
⎥
⎥
⎥
⎥
⎦

1
1−ϵ

. (6)

We assume separable utility u(Ct,Nt) = logCt −Nt as in Midrigan (2011). Thus, equilibrium
in the labor market requires:

wt = Ct, (7)

where wt =Wt/Pt is the real wage. The Euler equation is

1 = [Λt,t+1eit−πt+1] , (8)

where it is the nominal interest rate, and the the stochastic discount factor is

Λt,t+1 ≡ β
u′ (Ct+1)
u′ (Ct)

. (9)
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2.2. Monopolistic producers

Good j ∈ [0, 1] is produced by firm j according to a constant-returns to scale technology

Yt( j) = At
Nt( j)
At( j)

, (10)

where Nt( j) is labor hours, At is aggregate productivity and At( j) is idiosyncratic quality. Firms
maximize the sum of the discounted future profits, using the household’s discount factor. They
take the demand function (5) as given. Firm j’s nominal profit function given its nominal price
Pt( j) is

Dt( j) =Pt( j)Yt( j) − (1 − τt)WtNt( j)

=Pt( j)1−ϵAt( j)ϵ−1 (
1
Pt
)

−ϵ
Ct − (1 − τt)

Wt
At
At( j)ϵ (

Pt( j)
Pt
)

−ϵ
Ct

(11)

where τt is an employment subsidy financed by lump-sum taxes, and where for the second line
we have used the goods market-clearing condition Yt( j) = Ct( j) and conditions (5) and (10).

Crucially, firm j must incur a fixed “menu cost” η in labor units to change its price. The
firm chooses each period whether to update its nominal price to a new one P∗t ( j), or to keep
the price from last period Pt−1( j). This is the source of endogenenity of price stickiness in the
model.

It is useful to express the firms’ optimal pricing decision as a function of the price gap
xt( j) ≡ pt( j) − p

∗
t ( j), which is the log distance between the current, pt( j) ≡ log (

Pt( j)
At( j)Pt ),

and the optimal quality-adjusted relative price of good j, p∗t ( j) ≡log(
P∗t ( j)
At( j)Pt ). Thanks to the

convenient assumptions of random-walk quality shocks as in Midrigan (2011), the price gap is
the only firm-level state variable that the pricing decision depends upon. The firms’ optimal
pricing policy follows a Ss rule such that a firm j keeps its nominal price Pt( j) constant if
xt( j) ∈ [st,St], and resets it to the optimal price P∗t ( j) otherwise (equivalent to set xt( j) = 0).
Subindex t subsumes all aggregate states. Idiosyncratic quality shocks generates heterogeneity
across nominal reset prices P∗t ( j); however, quality-adjusted relative reset prices p

∗
t ( j) are all

identical. Thus, drop subindex j to simplify notation. When a firm keeps its nominal price
constant, its price gap evolves according to

xt = xt−1 + pt − p
∗
t + p

∗
t−1 = xt−1 − σεt − π

∗
t (12)

where
π∗t ≡ p

∗
t − p

∗
t−1 + πt (13)

is the inflation of the quality-adjusted relative optimal reset price.
The optimality conditions for the pricing rule require

V ′t (0) = 0, (14)

Vt(0) − ηwt = Vt(st), (15)

7



Vt(0) − ηwt = Vt(St), (16)

where firms’ end of period value function Vt(⋅) is expressed only in terms of price gaps as
all other states are aggregate and are subsumed by a time subindex. Equation (14) requires
that the value function is maximized at the optimal reset price (x = 0), and equations (15, 16)
require indifference between resetting the price and paying the menu cost versus keeping
prices constant at the endogenous Ss thresholds. The value function equals

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

x − x′ − π∗t+1
σ

)]dx′) [(Vt+1 (0) − ηwt+1)] ,
(17)

where the current real profits Πt(x) are given by

Πt(x) ≡
Dt
Pt
= Cte(x+p

∗

t )(1−ϵ) − Ct(1 − τt)
wt
At
e(x+p

∗

t )(−ϵ). (18)

The value function is the sum of current profits and the discounted continuation value. The
latter depends on the firms’ price gap next period, which, unless changed, evolves according
to (12) and is affected by the stochastic component ε whose density is ϕ(ε). The continuation
value then consist of two parts. The first measures the expected value Vt+1(x′) in the states of
the world where the price is not changed, i.e. when x′ remains within the inaction threshold
[st+1, St+1]. The second measures the expected value for the states of the world where the price
is updated to x′ = 0, which is given by Vt+1(0) net of menu cost ηwt+1.

Finally, Appendix D shows that V ′t (0) can be expressed as the sum of the marginal effect of
x on current profits and on the expected continuation value:

V ′t (0) = Π
′
t(0) +

Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+

Λt,t+1
σ
[ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
)] (Vt+1(0) − ηwt+1) .

2.3. Aggregation and equilibrium conditions

Firms’ individual price-setting decisions give rise to an endogenous probability density of end-
of-period price gaps gt(x). It consists of a continuous part, gct (x), and a mass point (dirac delta)
at x = 0, g0t such that

gt(x) ≡ gct (x) + g
0
t δ(x). (19)

The countinous part evolves according to the following law of motion

gct (x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
σ ∫

St−1
st−1 g

c
t−1(x−1)ϕ(

x−1−x−π∗t
σ )dx−1 + g0t−1ϕ(

−x−π∗t
σ ) , if x ∈ [st,St],

0, otherwise,
(20)
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and the mass point evolves according to

g0t = 1 − ∫
St

st
gct (x)dx. (21)

The first term on the right-hand side in the first line of equation (20) describes the evolution
of the density of price gaps of those firms that kept their nominal prices unchanged last period,
while the second term is the distribution of current price gaps of the firms that did change their
prices last period. Outside the Ss band, there is no mass, since firms whose price would fall
outside the Ss band reset their prices in the current period, thus creating a mass point at zero,
equal to the frequency of price changes (equation 21).

The aggregate price index implies

1 = ∫
St

st
e(x+p

∗

t )(1−ϵ)gt (x)dx. (22)

In turn, the labor-market clearing condition is given by

Nt =
Ct
At
∫

St

st
e−ϵ(x+p

∗

t )gt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

price dispersion

+ ηg0t
°

price adjustment cost

(23)

such that the total hours worked equals the total use of labor for the production of aggregate
output (the term Ct

At ) adjusted for the loss in aggregate output due to price dispersion (the term
in parenthesis) and the total amount of hours allocated to price adjustment (the second term in
the right-hand side).

The 12 equations (7), (8), (13) - (17), (19)- (23) plus Ct = Yt define the private equilibrium in
wt,Nt,Yt,Ct,Vt(⋅), St, st, p∗t ,πt,π

∗
t , gt(⋅), g

c
t (⋅), g

0
t , it. The central bankhas onedegree of freedom

to set the nominal rate.

2.4. Aggregate Shocks

The logarithm of aggregate productivity follows a first-order autoregressive process:

logAt = ρA logAt−1 + εA,t, (24)

where ρA ∈ [0, 1] and εA,t is an aggregate productivity shock, which arrives unexpectedly. The
employment subsidy τt follows the autoregressive process:

τt − τ = ρτ(τt−1 − τ) + ετ,t, (25)

where ρτ ∈ [0, 1], τ is the steady-state employment subsidy, and ετ,t is an unexpected cost-push
shock.

2.5. Auxiliary models

We briefly present three alternative models we use in our analysis.
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Simplified model. We also present a simplified version of the model to foster intuition. The
simplification consists in dividing each period t into two: a night and a day. The day is as in the
full model. What’s new is the night, when only firms are awake and can reset their prices for
free.

Under this setup, first, the price gap distribution collapses to a mass point at x = 0 every
night by construction as each firm closes its price gap. Second, when making a decision during
the day, firms set prices only with the current period in mind, as if their discount rate were
zero (β = 0). They do this because they know that they will be able to reset their prices for free
again the next night.

The simplification maintains the state-dependent nature of the firms’ price-setting problem:
both how many and which prices change will be decided endogenously as a response to the
aggregate and idiosyncratic shocks, taking into account the conduct of monetary policy. We
gain tractability, however, by replacing the dynamic problem of the firms with a series of static
problems, where future expectations play no role in the price-setting decisions. The advantage
of the approach is that, as we show below, objects familiar from conventional optimal policy
analysis like the Phillips curve, which describes the trade-off between inflation and output gap,
and the target rule, which describes the relationship between inflation and output gap under
optimal policy, become structural. Despite its simplicity, the model generates results that are
not only qualitatively but also quantitatively similar to analogous objects in the full model.

Thanks to this simplifying assumption, the firm’s value function (17) collapses to the current
profit function (18). Therefore the optimality condition for the reset price (14) simplifies to a
constant markup over marginal costs. Dropping the time index t for brevity, it reads

ep
∗

=
ϵ

(ϵ − 1)
(1 − τ)w. (26)

The firms’ price adjustment thresholds (15) and (16) now characterize the threshold values
which equate current profits under unchanged prices, Π(x), with profits under the optimal
price net of the menu costs, Π (0) − ηw

(ep
∗

)
1−ϵ
− (1 − τ)w(ep

∗

)
−ϵ
− η = e(p

∗+s)(1−ϵ)
− (1 − τ)we(p

∗+s)(−ϵ) (27)

(ep
∗

)
1−ϵ
− (1 − τ)w(ep

∗

)
−ϵ
− η = e(p

∗+S)(1−ϵ)
− (1 − τ)we(p

∗+S)(−ϵ). (28)

Free price changes in the preceding night implies that gc−1(x) = 0, g
0
−1 = 1, p

∗
−1 = 0 and,

therefore, the price gap distribution gc is now normally distributed with its mean given by
(π + p∗) and with variance σ2:

gc (x) =
1
σ
ϕ(

x + π + p∗

σ
) if x ∈ [s,S]. (29)

These 4 equations, together with 4 equations which don’t change relative to the full model
(labor supply (7), frequency of price changes (21), labor-market-clearing (23), definition of
the price level (22)) define an equilibrium in 9 variables w,π,C,N, s, S, g0, gc(⋅), p∗. The policy
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maker has one degree of freedom to choose π.13

Nonlinear Calvo model. This model is a natural benchmark that we contrast our model to. It
is identical to the baseline economy without idiosyncratic shocks σ = 0 or menu costs η = 0.
Instead, firms face an exogenous price change probability θ as in Calvo (1983). We will use this
benchmark both in the full and in the simplified setup.

CalvoPlus model. We use this model to study the robustness of our main results. It is an
extension of our baseline model proposed by Nakamura and Steinsson (2010), where the menu
cost is stochastic: it equals ηwith probability α and zero otherwise. The extension improves the
realism of the framework both by better capturing the distribution of price changes through the
introduction of small price changes, and better matching the extent of monetary non-neutrality
obtained by time-series evidence. Appendix G describes the details.

3. Optimal monetary policy problem and computational approach

We start our analysis by introducing the central bank’s problem. We consider the Ramsey prob-
lem, i.e., optimal monetary policy under commitment. We also present a new computational
method to deal with the complexities associated with the problem’s high dimensionality, and
we specify our baseline calibration.

3.1. Ramsey problem

The central bank selects the paths for all equilibrium variables subject to the competitive
equilibrium conditions. Combining households’ utility function in (1) and the market-clearing
conditions for final output Ct = Yt and for labor (23), the problem of a benevolent central bank
is

max
{wt,Yt,Vt(⋅),St, st,

p∗t ,πt,π
∗
t , gt(⋅), g

c
t (⋅), g

0
t }
∞
t=0

∞
∑

t=0
βt (logYt −

Yt
At
∫

St

st
e−ϵ(x+p

∗

t )gt (x)dx − ηg0t )

subject to the labor supply (7), firms’ value function Vt(⋅) (17), firms’ optimal pricing {st, St, p∗t }
(14), (15), and (16), the definition for inflation in quality-adjusted relative optimal reset price π∗t
(13), the distribution of price gaps (gt(⋅),gct (⋅),g

0
t ) determined by equations (19)-(21), and the

aggregate price index (22).
Two observations are due. First, we follow the approach in standard optimal monetary

analysis (Woodford 2003; Galí 2008) of separating the Ramsey problem in two: the equilibrium
pinned down by a benevolent central bank and the implementation problem, i.e. the nominal
interest rates path consistent with the equilibrium according to the household’s Euler equation
(8).

Second, note that the constraints set for this problem are continuous and differentiable
even though the individual firm’s price policy function is not. This is so because each firm has

13To ensure that firms have no incentive to deviate from a symmetric reset price at night, we assume that the
value of τ expected for the next day is such that π = 0 is the optimal policy.
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zero mass, and thus the discontinuity in a single firm’s behavior does not lead to a discontinuity
in aggregates. Furthermore, Vt(x) and gct (x) are continuously differentiable over the relevant
range (st,St).

3.2. Computational solutionmethod

We solve the problem with a new nonlinear algorithm, which extends the approach in González
et al. (2024) to discrete time. The core idea is to represent the Ramsey problem of the central
bank as a high-dimensional optimization problem in which the Bellman equation and the law
of motion (LOM) of the price-gap distribution are constraints. We summarize the approach
here, while Appendix F presents the details.

The solution of this Ramsey problem poses several challenges. First, the value function
Vt(⋅) and the distribution gct (⋅) are infinite-dimensional variables and we need to compute the
first-order conditions (FOCs) with respect to these variables.14 Second, any approximation of
the problem needs to account for the discrete choices of the firm and to be smooth and accurate
enough to capture the higher-order effects of policy.

The first step consists in transforming the original infinite-dimensional problem into a
high-dimensional problem by discretizing the value and distribution functions. To this end, we
replace the distribution and value functions by piecewise linear functions over a grid. The grid
itself is endogenous. It is selected to include the two bounds of the inaction region [st,St] and
the optimal price (xt = 0) at each t.

Next, integrals to compute expectations are evaluated algebraically, conditional on those
piecewise linear functions. Then, we require the law of motion of the distribution and the
Bellman equation to hold exactly at the (endogenous) grid points at each period t. In doing so,
we explicitly take themass point at 0 into account in the distribution, in line with the notation in
the paper. This transforms the private equilibrium conditions into a large system of difference
equations. In particular, the firms’ Bellman equation at time t can be approximated over a grid
of price gaps x as

Vt =Πt + [AtVt+1 − bt+1ηwt+1] ,

where Vt and bt are vectors of the value function and the expected adjustment probability
evaluated at different grid points, respectively, and At is a matrix that captures the idiosyncratic
transitions due to firm-level quality shocks and aggregate inflation. Similarly, the law of motion
of the density for x ≠ 0 is

gct = Ftg
c
t−1 + ftg

0
t−1,

14There are a number of proposals in the literature to deal with this problem. Nuño and Thomas (2022), Smirnov
(2022), and Dávila and Schaab (2022) deal with the full infinite-dimensional planner’s problem in continuous time.
This implies that the Kolmogorov forward (KF) and the Hamilton-Jacobi-Bellman (HJB) equations are constraints
faced by the central bank. They derive the planner’s FOCs using calculus of variations, thus expanding the original
problem to also include the Lagrange multipliers, which in this case are also infinite-dimensional. These papers
solve the resulting differential equation system using the upwind finite-difference method of Achdou et al. (2021).
Bhandari et al. (2021) make the continuous cross-sectional distribution finite-dimensional by assuming that there
areN agents instead of a continuum. They then derive standard FOCs for the planner. In order to cope with the large
dimensionality of their problem, they employ a perturbation technique. Le Grand et al. (2022) employ the finite-
memory algorithm proposed by Le Grand and Ragot (2022). It requires changing the original problem such that, after
K periods, the state of each agent is reset. In this way the cross-sectional distribution becomes finite-dimensional.
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where gct and ft are vectors representing the probability distribution function and the scaled
and shifted normal distribution, respectively, Ft is a matrix that captures the evolution of the
price distribution due to firm-level quality shocks and aggregate inflation. We define

g0t = 1 − e
⊺
t gct .

as the mass point at xt = 0 where et is a vector of weights corresponding to the trapezoid rule.
The labor market clearing condition and the aggregate price index can be written in a similar
form.

Once we have the discretized version of the problem, we find the Ramsey planner’s FOCs by
symbolic differentiation. We are now left with an even larger system of difference equations, as
we have FOCs for the value and distribution functions at each grid point, and the associated
Lagrange multipliers.

Next, we find the Ramsey steady state. To do so, we use the steady-state private equilibrium
conditions to construct a nonlinear multidimensional function mapping inflation to the rest
of variables. We then combine this function with the planner’s FOCs. As this system is linear
in Lagrange multipliers, finding its solution boils down to finding the root of a nonlinear uni-
variate function in inflation. To do so we use the Newton method. Finally, to compute the
dynamics of the Ramsey problem, we solve the system of difference equations non-linearly in
the sequence space, also using the Newton method.

The symbolic differentiation and the two applications of the Newton method can be auto-
mated using several available software packages, in our case, Dynare (Adjemian et al. 2023). The
approach is also compatible with the nonlinear sequence-space Jacobian toolbox by Auclert et al.
(2021). It can be employed to compute optimal policies in a large class of heterogeneous-agent
models. Compared to other algorithms, it stands out as easy to implement. In our application,
it runs in a few minutes on a normal laptop. As González et al. (2024) show, this algorithm
delivers the same results as computing the planner’s FOCs using calculus of variations and then
discretizing the resulting system of differential equations.

3.3. Calibration

Table 1 presents the calibration of our baseline and the simplified model. One period is one
months. We set the discount factor to 0.961/12, which implies a steady-state real interest rate of
4%. The elasticity of substitution across products is ϵ = 7, as in Golosov and Lucas (2007).

We calibrate the menu cost and the standard deviation of idiosyncratic shocks to match two
target moments: an 8.7%monthly frequency of price changes in the steady state as documented
for the U.S. in Nakamura and Steinsson (2008), and a 20% frequency at 10% inflation rate broadly
in line with the peak values observed in the U.S. in 2022 as documented by Montag and Villar
(2023). In the baseline model, the implied menu cost is η = 1% and the steady-state standard
deviation of idiosyncratic quality shocks is σ = 1.2%.15 The steady-state labor subsidy τ is set to
ensure that output is at its efficient level.

15The calibration does not match the average absolute size of price changes. Our results would be qualitatively
similar under the alternative calibration that would match the steady state frequency and the size of price changes
(not shown).
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β ϵ η σ τ ρA ρτ

Baseline 0.961/12 7 0.010 0.012 0.1435 0.951/3 0.91/3

Simplified model 0.961/12 7 0.004 0.021 0.1431 0 0
TABLE 1. Parameter values

Finally, the persistence of shocks is taken from Smets andWouters (2007), once transformed
from quarterly to monthly frequency: ρA = 0.951/3 for aggregate productivity shocks and ρτ =

0.91/3 for employment subsidy shocks (interpreted as cost-push shocks).
These parameters are inherited also by the additional auxiliarymodels. The same calibration

targets imply an η = 0.4% and σ = 2.1% in the simplifiedmodel. In the Calvomodel, we disregard
idiosyncratic shocks σ = 0 and calibrate the probability of price adjustment (1− θ) so as to make
the Calvomodel imply an identical response to a small monetary policy shock than our baseline
model (Auclert et al. 2024). This requires a parameter θ = 40%.

4. Strike while the iron is hot

This section focuses on ourmain result: the nonlinearity of optimalmonetary policy in response
to cost-push shocks.16We first present numerical simulations in our full model to characterize
the nature of the nonlinearity and to contrast it with the conventional Calvo framework. Then
we describe its main driving forces relying on the simplified model. We close the section by
showing robustness in the CalvoPlus model.

The section analyzes timeless optimal monetary policy (Woodford 2003; Galí 2008). This
corresponds to the optimal monetary policy starting from the Ramsey steady state, when all of
the Lagrange multipliers are initialized at their steady-state values.17

4.1. Nonlinear optimal monetary response to cost-push shocks

How should optimal monetary policy react to cost-push shocks of different sizes, and how do
reactions in our baseline model compare to those in the canonical Calvo framework? Figure 1
shows impulse responses to a large cost-push shock (ετ,t, blue solid line) in the baseline model,
and contrasts it to linearly-scaled impulse responses to a small cost-push shock (yellow dotted
line); and to a large cost-push shock in the Calvo model (red dashed line).18 The size of the
large shock is calibrated to generate a 20% frequency at the peak in the baseline model, a 12.3
percentage point increase from the 8.7% frequency at the steady state. The magnitude of the
frequency increase is broadly in line with that observed during the 2022-2023 inflation surge in
the U.S. (Montag and Villar 2023).19

16We defer the analysis of the steady state of the optimal Ramsey problem to Section 5.
17We assess the implications on the time inconsistency of optimal policy in our state-dependent framework in

Section 5. As long as the labor subsidy τ in the steady state offsets the average markup distortion, as in our baseline
calibration, the optimal policy is virtually time consistent.

18The scaling factor is the ratio between the shock size of the large (68%) and the small shock (0.25%).
19The impulse responses are computed nonlinearly under perfect foresight. For small shocks, this is equivalent

to the first-order approximation to the stochastic problem, as discussed by Boppart et al. (2018). For large shocks,
its interpretation is similar to that in Cavallo et al. (2024): an unexpected once-and-for-all large shock that hits the
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FIGURE 1. Impulse responses to a cost-push shock under the optimal monetary policy

The figure shows impulse responses in deviations from steady state to a large cost-push shock in the baseline menu
cost model (blue solid line); and it contrasts the responses with those of a linearly-rescaled small cost push shock in
the baseline model (yellow dotted line) and a large cost-push shock in the Calvo model (red dashed line).

The optimal policy response “leans against the wind” in all three cases. The central bank
tolerates an inflation increase (panel a) to partially cushion the decline in output (panel b).20

Optimal policy implies a temporary decline in the real interest rate in parallel with the spiking
inflation, but prescribes a commitment to a persistently tight policy stance in the future.

Optimal monetary policy in the menu cost model is nonlinear. Impulse responses to the
large shock are significantly different from the linearly-scaled responses to a small shock.
Notably, the frequency under a large shock increases substantially, while it remains almost
unchanged after the small shock, even though it is linearly scaled (panel d). This nonlinear
frequency response is an inherent feature of the model. Consider a small inflationary shock.
The repricing frequency stays unchanged because the fall in the frequency of price decreases
almost completely offsets the rise in the frequency of price increases. If one considers instead
a large inflationary shock, the price decreases fade out and the rise in the frequency of price
increases quickly dominates, thus producing an overall increase in the repricing frequency
(Gagnon 2009; Karadi and Reiff 2019; Alvarez and Neumeyer 2020; Alexandrov 2020; Cavallo
et al. 2024).

economy in the deterministic steady state.
20For cost-push shocks, output equals the output gap, as this type of shock yields no variation of efficient output.

15



FIGURE 2. Optimal response to a cost-push shock for different shock magnitudes.

The figure displays the difference in the value of inflation, output gap, and repricing frequency between the period
after the shock arrival and the value in the deterministic steady state. The real interest rate is evaluated over the
first 2 years of the shock. For reference: a cost-push shock caused by the full removal of the subsidy (-100%) causes
an increase in real marginal costs of around 5% on impact.

The optimal policy is characterized by a more aggressive monetary policy (panel c) after
the large cost-push shock, which raises the frequency of price changes, than after the small
shock. The central bank “strikes while the iron is hot.” The tighter policy leads to a substantially
more muted increase in inflation after the large shock than after the linearly-scaled small shock
(panel a). The output effects are broadly similar (panel b).21

Figure 2 displays the responses of key macro variables under optimal policy for a range
of different adverse cost-push shock sizes in the menu cost model (blue solid line), in the
Calvo model (red dashed line), and in a counterfactual menu-cost model (yellow dotted line)
described below in Section 4.3. In particular, it draws the peak responses of inflation, output,
and frequency, as well as the cumulative response of the annualized real interest rate over the
first 2 years of the shock (∑24t=1(it − πt+1)/2).

The peak frequency response in the baseline model (panel d) increases with the absolute
shock size and has a zero slope around the steady state. This confirms the nonlinear nature of

21The output effect is somewhat smaller for large adverse cost-push shocks than for linearly-scaled small shocks
in the Calvo model (see Figure 2). This nonlinearity of the underlying framework is inherited in the menu cost
model, which explains why output declines slightly more in the case of small shocks.
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FIGURE 3. Strike while the iron is hot

The figure displays the relationship between impact inflation and the cumulative real interest rate under optimal
policy and different cost push shocks. The real interest rate is evaluated over the first 2 years of the shock.

the optimal frequency response outlined above: frequency stays unresponsive to small shocks,
but responds strongly to large shocks. The cumulative real rate figure (panel c) confirms that
the policy is more aggressive in the menu cost model for large shocks than for small shocks and
than in the Calvo model.22 In line with the more aggressive policy in the menu cost model, the
peak output effect is somewhat larger than in the Calvo model (panel b). Finally, the response
of inflation increases less than proportionally with shock size (panel a) in the menu cost model,
which is in contrast with the near-linearity of the inflation response of the Calvo model. When
shocks are small, the optimal response of inflation in both models is near-linear and has a
similar – though not identical – slope.

Figure 3 illustrates the relationship between inflation and the cumulative real rate under
optimal policy for different cost-push shocks. The cumulative real interest rate can be inter-
preted as the “policy stance” to which the central bank commits in response to the inflationary
cost push shock. When inflation is high, the central bank sets the nominal rate path so as to
achieve an over-proportional increase in the cumulated real rate. In other words, when firms
adjust prices more frequently, the policy stance responds more strongly to inflation.

4.2. Inspecting themechanism in the simplifiedmodel

In order to provide intuition for the driving forces behind the strong anti-inflationary stance
of the central bank after large cost-push shocks, we analyze the simplified version of the
model introduced in Section 2.5. As outlined there, the simplification introduces a subperiod
of night, when the firms can reset their prices for free. This simplification transforms the
dynamic problem into a series of static problems, but keeps the key channel active: firms decide
endogenously when to adjust prices in response to the average shock and to monetary policy.

We cast the central bank’s problem as a 2-dimensional optimization problem in output23

22Though hard to perceive visually, the slope of the solid blue line in panel c is similar to that of the dashed red
line when the shock size is close to zero. The cumulative real rate as a function of shock size is thus slightly convex
in the menu cost model while concave in the Calvo model.
23The efficient output is Y e = 1, so log output equals to log output gap.
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FIGURE 4. Phillips curve

Panel a plots the Phillips curve implicitly defined by equation (30), as well as the counterfactual value in the case
of Calvo pricing. The output gap is logY and annualized inflation is 12π. Panel b displays the mapping between
frequency and inflation in the simplified model.

and inflation, in analogy to the well-known textbook analysis of optimal monetary policy. A key
advantage of the simplified model is that we can do this fully nonlinearly, without any need for
approximation. We first inspect the central bank’s choice set, defined by the Phillips curve, and
then her objective.

Phillips curve. The central bank’s choice set are the possible allocations under a private equi-
librium. We show first that these equilibria determine a relationship between inflation and
output (or equivalently, the output gap): the Phillips curve. We characterize this relationship as
a proposition and relegate its proof to the appendix. Throughout this section, we suppress the
time subindex t for brevity.

PROPOSITION 1. Private equilibria in the simplified model can be characterized by a single equation
in inflation and output as follows

1 = ∫
S

s
e(p)(1−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (

ε (1 − τ)
ε − 1

Y)
1−ϵ
[1 − ∫

S

s
1
σ
ϕ(

p + π
σ
)dp] , (30)

where s and S are implicit functions.24

PROOF. See Appendix A.

Panel (a) of Figure 4 shows the Phillips curve in the calibrated model and compares it to
the case of Calvo pricing. In both cases, the curves are increasing: under sticky prices, a policy
easing that raises inflation would also raise output.25 The key difference between Calvo and
state-dependent pricing models is that while in Calvo the Phillips curve is near linear, the curve
is convex in the menu cost model: that is, as inflation increases, its expansionary effect on
output diminishes.
24S(Y ,τ) and s(Y ,τ) are the two roots of the equation ( ϵ

ϵ−1(1 − τ)Y)
1−ϵ − ((1 − τ)Y)1−ϵ − η = x(Y ,τ)1−ϵ − (1 −

τ)Yx(Y ,τ)−ϵ for x = s,S.
25At zero inflation, the slopes are identical in the two models. This happens by construction, as the Calvo model is

re-calibrated to replicate the slope of the Phillips curve in the limit as inflation approaches its steady state value.
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Panel (b) of Figure 4 depicts the relationship between the frequency of price changes and
inflation in the menu cost model.26When inflation is low, the frequency of price changes re-
mains close to its steady-state level, which is 8.7% permonth in our calibration. Thus, locally the
economy behaves similarly to a (suitably calibrated) Calvo economy (as emphasized by Auclert
et al. 2024). However, as inflation gets larger, frequency rises as more and more firms decide to
update their prices. This makes average prices more flexible, reducing the responsiveness of
output to changes in inflation, thus steepening the Phillips curve.27

The Phillips curve describes the choice set of the policy maker setting inflation. Its slope
reflects the state-dependence of the inflation-output trade-off involved in monetary policy
decisions: It states how much the output gap must decline to reduce inflation by a percentage
point, also known as the sacrifice ratio of monetary policy. This slope more than doubles when
frequency reaches 20% per month, a magnitude documented during the post-COVID inflation
surge (Montag and Villar 2023). While in a low-frequency and low-inflation environment the
sacrifice ratio is high, it becomes much lower once frequency and inflation increase.28

Welfare. We turn next to the central bank’s preferences in the simplified model. The central
bank maximizes welfare (1), which in the simplified model is equivalent to maximizing period
utility U = logC − N.29 First, we describe how the underlying welfare distortions, namely
misallocation and price-adjustment costs, affect utility. Second,we link thesewelfare distortions
to the output gap and inflation in the simplified model.

PROPOSITION 2. Let U − Ue be the central bank’s utility gap relative to the utility under efficient
allocation expressed in efficient-consumption-equivalent units. Let the welfare-relevant markup be
the relative price of firm j divided by the welfare-relevant marginal cost: µ( j) = P( j)/P

WRMC( j) , where
WRMC( j) ≡ wA( j)/A. Then the utility gap can be expressed as a function of the average welfare-
relevant markup (µ), the markup dispersion (ζµ), and price adjustment costs as

U −Ue = − logµ − (
1
µ
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

−
1
µ
(ζµ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Misallocation

− ηg0
°

Adjustment costs

, (31)

where the average welfare-relevant markup is µ ≡ (∫ µ( j)1−ϵdj)
1

1−ϵ , the markup dispersion is ζµ ≡

∫ (µ( j)/µ)−ϵdj, and ηg0 are the price adjustment costs in labor units.

PROOF. See Appendix B.
26Frequency is exogenous and independent of inflation in the Calvo model (not shown).
27At some point, in our calibration at frequencies over 40% per month, and roughly corresponding to annualized

inflation levels around 20%, the Phillips curve becomes backward bending (not shown). At this level, monetary
policy reach its maximum effectiveness in stimulating activity, and any further inflation reduces output. However,
such levels of inflation and frequency are fairly extreme. For the rest of the analysis we restrict our attention to
inflation levels that can be large, but not as large as to go beyond this point.
28Blanco et al. (2024b) also discuss how the sacrifice ratio changes with the level of inflation.
29This is because private equilibrium conditions are static in the simplified model. Note that for the same reason

there is no difference between commitment and discretion.
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Proposition 2 shows that welfare costs are intuitively driven by two components: First, the
misallocation, which is caused by the deviation of firms’ relative prices from the welfare-relevant
marginal costs, introduces a labor wedge. Misallocation can be further decomposed into the
“average markup” term which is a nonlinear function of the average welfare-relevant markup
(µ), and the product of the inverse average markup and the “markup dispersion”. The average
welfare-relevant markup describes average over- or under-consumption, while the markup
dispersion refers to the inefficient relative consumption of different good varieties. Second,
labor is inefficiently allocated to price adjustment (menu costs), which is captured by the third
component.30

In the simplified model, the utility gap and its components can be expressed as functions
of inflation and output (gap). This is analogous to the Calvo case, where welfare can also be
expressed as a function of the output gap and inflation.31

This is formulated in Proposition 3.

PROPOSITION 3. In the simplified model, utility gap can be expressed as

U −Ue = log(Y) − (Y − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

− (32)
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

−

η [1 − ∫
S

s
1
σ
ϕ(

p + π
σ
)dp]
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Adjustment costs

where s, S and p∗ are implicit functions of inflation.32 The utility function depends only on inflation
and output: the first term driven by the average welfare-relevant markup in equation (32) depends only
on the output (gap), whereas price dispersion and adjustment costs depends only on inflation.

PROOF. See Appendix A.

Figure 5 illustrates this decomposition for the simplified menu cost model and contrasts
it to the analogous decomposition in Calvo. The average welfare-relevant markup coincides
in the two models (panel b). Price dispersion increases in inflation in Calvo, while it mildly
decreases in inflation in the menu cost model (panel c). This decrease is due to the endogenous
increase in the frequency of price changes, which leads more firms to close their markup gaps.
Furthermore, it is exactly the firms with the largest markup gaps, who endogenously self-select
to adjust. In contrast, the adjustment costs (panel d) increase with inflation in the menu cost
model in line with the endogenous increase in the frequency. Adding up the latter two pricing
frictions and comparing them to price dispersion in Calvo, we see that the welfare effects of
30The welfare decomposition into distortions of Proposition 2 straightforwardly generalizes to the full model. It

also applies to Calvo model, in which case the last term is 0.
31In particular, in Calvo, up to a second order the utility function is quadratic of the form − 12 [ ŷ

2 + ϵ ( 1−θθ ) π̂
2],

where the ‘hat’ denotes deviation from the zero inflation steady state (Woodford 2003).
32s(π), S(π) and p∗(π) solve the Ss band conditions, and the definition of the price level.
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FIGURE 5. Welfare decomposition

Note: Decomposition of welfare differences according to equation (31). Welfare gaps are expressed in % of efficient
consumption.

nominal rigidities are U shaped in inflation in both models. Quantitatively, however, the losses
from nominal rigidities are somewhat smaller in the menu cost model (Burstein and Hellwig
2008). Thus, the central bank is slightly less inflation-averse than in the case of Calvo pricing,
which is reflected in the different degrees of ellipticity of the iso-welfare curves shown in panel
a.

Optimal policy. We can now set up the central bank’s problem. It chooses inflation π and output
Y so as to maximize the objective (32) subject to the Phillips curve (30). Figure 6 represents
this problem and its solution graphically. It shows the Phillips curve (PC, dashed lines) for a
particular value of the exogenous cost-push shock τ; and the utility isoquant (thin solid lines)
that tangents that PC. The optimal policy is defined by their tangential point, points A and B for
Calvo and menu cost pricing, respectively. The “target rule” traces these points for different
levels of the cost-push shock (thick solid line).

Three key insights can be derived from this figure. First, the slope of the target rule at zero is
slightly smaller in the menu cost economy than in the Calvo economy. Since the Phillips curve
slopes coincide for both models at zero by construction, the different slope of the target rule is
exclusively due to the fact that the welfare function is less anti-inflationary in the menu cost
model. This effect is quantitatively small.

Second, the target rule is almost linear under Calvo pricing (red). This is the consequence of
an almost linear Phillips curve and a welfare function that is approximately quadratic. Under
menu cost pricing, however, the target rule is concave (blue). This implies that the central bank
leans more and more aggressively against inflation as inflation increases. The central bank
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FIGURE 6. Optimal policy and the target rule

This figure combines the welfare functions from panel a in Figure 5 with the Phillips curves from panel a in Figure 4
to derive the target rule.

strikes while the iron is hot.
This begs the question why. Calvo and menu cost models differ in both the objective and the

constraint.Which one is responsible for this? To shed light on this question, we compute optimal
policy assuming that the central bank faces the Phillips curve of the menu cost framework, but
it has the objective over inflation and output of the Calvo model. That is, we look for tangential
points of the blue Phillips curve with the red iso-welfare curve. Point C marks this point for the
given Phillips curve. The yellow line traces these points out for all levels of the cost-push shock.
Since the Calvo central bank is slightly more inflation averse, the yellow line is lower than the
blue menu-cost target rule. Yet, the degree of concavity is similar. We can thus conclude that
the nonlinearity of the target rule in the menu cost model is driven by the strong convexity of
the Phillips curve.33 The shape of the objective function, if anything, diminishes the concavity
of the target rule a bit, relative to Calvo. This is the third insight.

What is the intuition behind the strike while the iron is hot result? In the case of small
shocks, the change in the frequency of price adjustments is negligible, and thus the logic of the
Calvo framework still applies: The central bank tolerates some inflation to partially cushion the
fall in the output gap. However, as inflation rises, frequency starts to pick up and prices become
more flexible. This reduces the sacrifice ratio: to achieve the same impact on the output gap,
the central bank would need to let inflation increase substantially more in this case, and it is not
willing to do so. Thus, after a large cost-push shock, the central bank stabilizes inflation more
relative to the output gap than after small shocks. The central bank “leans against frequency,”
tightening policy more aggressively in the case of a large shock that increases frequency. In the
nonlinear Calvo model (red dashed line), by contrast, the nonlinearity is negligible, despite the
fact that we do not linearize the model.
33The cost-push shock itself causes a parallel sideward shift of the Phillips curve (Proof: see appendix A). It is thus

not a cause for the nonlinearity of the target rule.
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Note that the strike while it’s hot result is not obvious. The shape of the objective function
could have fully offset the nonlinearity of the Phillips curve such that the target rule remained
linear. Indeed, in the linearized Calvo framework, for example, the change in the objective
fully offsets the change in the shape of the Phillips curve caused by permanent changes in the
frequency of price changes. There, even though the slope of the Phillips curve increases with
the frequency, the relative weight of inflation in the objective declines proportionally (Galí
2008). It declines because higher frequency raises the flexibility of the price level, and reduces
the increase in price dispersion caused by a marginal increase in inflation. The two effects fully
offset each other and the slope of the target rule depends only on the elasticity of substitution
(−1/ε) and not on frequency. We conclude that the relative stability of the objective function
in the presence of large shocks is just as important for our strike it while it’s hot result as the
nonlinearity of the Phillips curve.

4.3. Relation to the full model

In the nonlinear full dynamic model, the Phillips “relationship” is a dynamic multidimensional
relationship, depending both on current and expected state variables and is described by several
equations. There is thus no simple structural relationship linking current inflation and output
anymore.34 Instead, the Phillips relationship is made up by a dynamic block of equations which
contains not only the definition of the price level (22), the firms’ optimality conditions (now
dynamic) (14-16) and the definition of frequency (21) as in the static model, but also the law of
motion of the distribution (20), and the value function (17). A similar argument applies to the
welfare function in terms of current inflation and output. The table in the Appendix E compares
the equilibrium conditions of the simplified (static) Calvo and menu cost models to those of the
full model.

Nevertheless, much of the intuition carries over and it is still useful to think broadly in
terms of objective and constraints. To illustrate this, Figure 7 compares the Phillips curve and
the target rule from the simplified model with the analogous relationships between output and
inflation implied by the full model after a cost push shock under optimal policy (panel a) and
after a monetary policy shock under a Taylor rule (panel b). In all cases we display the response
of variables to shocks of different magnitudes on impact starting from the steady state of the
Ramsey problem. As explained above, in the full model these relationships are not structural,
but are conditional on the initial conditions and the shock process. Nevertheless, these two
relationships are fairly stable with respect to those conditions and are surprisingly similar to
the structural relationships uncovered from the simplified model.

Interpreting this figure for the full model, two features are worth noticing. First, the slope of
the output-inflation relationship under optimal policy (what we call "the target rule") is almost
indistinguishable at zero from that under Calvo (panel a), which, is given by −1/ϵ up to a first
order (see Galí 2008). The Calvo model thus delivers a good approximation of optimal policy for
moderate levels of inflation.

Second, the nonlinearity of the menu cost model becomes quantitatively significant quite
34Note that the same is true in the nonlinear Calvo model, the Phillips curve only emerges under linear approxi-

mation.
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FIGURE 7. Simplified versus full model

Note: Panel a contrasts the target rule in the simplified model (blue dash-dotted line) with the response of inflation
and output gap on impact in the full menu cost (blue solid line) and Calvo models (red dashed line) to a cost-push
shock under optimal monetary policy. Panel b contrasts the Phillips curve in the simplified model with the impact
response to a monetary policy shock under a Taylor rule in the full menu cost and Calvo models.

quickly. At 10% inflation for example, the slope of the Phillips relationship is 150% larger than
under Calvo pricing. At the same inflation level, the optimal policy response to a cost push shock
is almost 50%more restrictive in terms of output. Thus, while at moderate inflation levels the
Calvo model is a good enough approximation of the menu cost model, this equivalence breaks
down at inflation levels such as those seen in 2022, when inflation reached approximately 10
percent.

The nonlinearity of the sacrifice ratio is the main reason behind the “strike while the iron
is hot” result also in the full model. To show this, we have rerun our optimal Ramsey policy
exercise in the full model combining the menu cost framework with a counterfactual quadratic
objective in the (i) inflation gap, the deviation of inflation from its optimal steady state value,
and (ii) output gap with relative weights derived from the second-order approximation of the
Calvo model (Woodford 2003). The objective approximates the true objective in the nonlinear
Calvo framework well. The results are shown in Figure 2 (yellow dotted line). The figure shows
that, in line with the results of the analogous exercise in the simplified model, the inflation
response is similar, even more nonlinear under this counterfactual scenario than the baseline.
This confirms that the key reason behind the nonlinearity of the target relationship is the
nonlinearity of the Phillips relationship also in the full model.

4.4. Robustness and sensitivity analysis

We now show the robustness of the nonlinear "strike while the iron is hot" optimal monetary
policy. In particular, we explore its robustness in an extension of the Golosov and Lucas (2007)
model, the CalvoPlus model (Nakamura and Steinsson 2008), and its robustness to alternative
parameter choices.

CalvoPlus model. CalvoPlus model is a variation of the canonical menu cost model, where the
menu cost is stochastic: price adjustment is free with probability α, as in the Calvo (1983) model,
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and takes a positive value (η) with probability 1 −α. This setup introduces small price changes,
and therefore, improves the model’s ability to fit better the distribution of price changes. At the
macro level, by reducing the selection of large price changes, it increases the real effects of
monetary policy and brings it closer to time-series evidence (Nakamura and Steinsson 2010). In
the context of our analysis, the framework affects the nonlinearity of the Phillips relationship,
which raises concerns that it may potentially modify the monetary policy prescriptions already
discussed. However, we show that this is not the case. This result supports the robustness
of the strike-while-the-iron-is-hot policy conclusion in a realistic extension of the canonical
Golosov-Lucas model.

(a) Target relationship (b) Phillips relationship

FIGURE 8. Target and Phillips relationships in the baseline and in the CalvoPlus model

The figures contrast the relationship between inflation and output gap movements on impact in the baseline model
versus the CalvoPlus model under optimal policy and various sizes of cost-push shocks (target relationship, panel a)
and under a Taylor rule and various sizes of monetary policy easing shocks (Phillips relationship, panel b). Two
parameterizations of the CalvoPlus model are presented: (i) the probability of a zero menu cost is 50%; and (ii) 80%.

Two parameterizations are presented: (i) the probability of zero menu cost α is 50%; and (ii)
80%. We recalibrate the menu cost η and the dispersion of idiosyncratic shocks σ parameters
to match in the steady state the average frequency in the U.S. data of 8.7%, and match a 20%
frequency increase at a 10% inflation rate.

Results are presented in Figure 8. Panel (a) of the figure shows the target relationship be-
tween the inflation rate and the output gap on impact affter cost push shocks under optimal
policy. The figure shows that the relationship is robust in the CalvoPlus model: strike-while-the-
iron-is-hot policy is still optimal. Notably, the extent of nonlinearity increases with the Calvo
parameter (α): the higher the probability of free price changes, the more anti-inflationary opti-
mal policy should be. This happens, even though, as we have seen above, the target relationship
is near linear in the Calvo model. A key factor in this result is that the Calvo parameter (α) in
the CalvoPlus model brings the baseline menu cost model closer to the Calvo model for small
shocks, but influences its response to large shocks much less, when the frequency-response is
driven by the behavior of the (1 −α) firs facing positive menu costs.

Panel (b) shows the relationship between inflation and output gap under a Taylor rule on
impact after a monetary policy shock in the three models - the Phillips relationship discussed
above. The figure shows that the CalvoPlus model can substantially reduce the slope of the

25



(a) Target relationship (b) Phillips relationship

FIGURE 9. Robustness of the target and Phillips relationships for alternative parameters

The figures recreate the relationship between inflation and output gap under optimal policy on impact after cost-push
shocks (target relationship, panel a) and Taylor rule on impact after monetary policy shocks (Phillips relationship,
panel b) for alternative parameter values. They show sensitivity to various elasticity of substitution parameters
(ϵ = 3, 11) and various persistence values of the cost push shock (ρτ = 0.75, 0.99).

Phillips relationship, bringing the model closer to the Calvo (1983) model after small shocks,
also improving the realism of the framework (Nakamura and Steinsson 2010). At the same
time, the CalvoPlus framework still implies a highly nonlinear Phillips relationship, with a
slope that increases even faster than the baseline for similar increases in the inflation rate.
This happens because, as the shocks become larger and the frequency of price adjustment
increases, the share of price-adjusters paying the adjustment costs increases mechanically,
bringing the model closer to the canonical Golosov and Lucas (2007) framework. The increase
in this share leads to an additional source of nonlinearity in the Phillips relationship. This
higher nonlinearity further reduces the sacrifice ratio of disinflation in CalvoPlus models with
higher Calvo parameters, so making a stricter anti-inflationary stance optimal.

Alternative parameterizations. Panel (a) of Figure 9 contrasts the target relationship between
annualized inflation and the output gap (on impact) under Ramsey optimal policy in the
baseline model with alternatives with varying degrees of persistence of the cost-push shock
(ρτ = 0.75, 0.99); and with alternative values of the elasticity of substitution parameter (ϵ = 3, 11).
It also shows straight lines with slope −1/ϵ for ϵ = 3, 7, 11. The figure shows that (i) the target
relationship is influenced by the persistence of the underlying shock, but the variation is quan-
titatively small. Furthermore, (ii) the elasticity of substitution plays a key role in determining
the slope of the target relationship. For small shocks, the slope of the target relationship is
quantitatively close to, albeit slightly higher than −1/ε, which is the slope of the target rule, the
relationship between inflation and the change in the output gap, in the linearized Calvo model.
Lastly, (iii) the qualitative features of the nonlinearity after large shocks are robust: it is optimal
to strike while the iron is hot for a wide range of parameter values.

Panel (b) of Figure 9 shows the robustness of the Phillips relationship. The figure reports
the relationship between the impact effect of annualized inflation and the impact output gap
for different i.i.d. monetary policy shocks of varying sizes under the Taylor rule as panel (b) of
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FIGURE 10. Steady-state price-gap density.

The figure displays the steady-state price-gap density g(x) with zero inflation. The dashed yellow line indicates the
mass of firms at the upper threshold of the (S, s) band.

Figure 7. It reports how the relationship changes when varying the elasticity of substitution
parameter ϵ = 3, 11.35 The figure shows that the relationship is robust and stays nonlinear across
the relevant parameter space.

5. Optimal monetary policy: additional results

We now proceed to investigate additional results: optimal long-run inflation, optimal mone-
tary policy to an aggregate productivity shock, and time-inconsistency of the Ramsey optimal
monetary policy.

5.1. The steady state under the optimal policy

The solution of the Ramsey planner’s problem has a steady state featuring a slightly positive
inflation of 0.07%.36 This is different from the standardNewKeynesianmodel with Calvo pricing
(Galí 2008), where the optimal inflation in the Ramsey steady state is zero. The value of inflation
in the Ramsey steady state in the menu cost model is very close to the value of steady-state
inflation that maximizes steady-state welfare, which in turn is also very close to the value of
inflation that minimizes the frequency of price adjustments.

What explains the positive optimal inflation? The key factor is the asymmetry of the profit
function (18). For a firm, a negative price gap is more undesirable than a positive price gap of
the same size because a negative price gap −x leads to much larger sales increase at a markup
loss of −x, while the positive price gap x leads to only somewhat smaller sales drop at a markup
35We recalibrate the menu cost and the idiosyncratic quality shock volatility such that the steady state frequency

stays constant across calibrations and it generates 20% frequency at 10% inflation.
36In our numerical exploration, we have only found a single steady state.
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gain of x. This implies that the (S, s) band is asymmetric: the lower threshold st is closer to
the optimal price than the upper one St (see Figure 10). Thus, in the zero inflation steady state,
there is more mass of firms close to the lower threshold of the inaction band than to the upper
threshold. As a result, there are more upward than downward price adjustments. Small positive
inflation raises the optimal reset price p∗ and shifts the (S, s) band leftwards and thus reduces
the number of upward price movements by more than it increases the number of downward
price movements. The frequency of price adjustments decreases and, with it, the distortions
caused by menu costs. Quantitatively, this effect is small but not negligible.

5.2. Timeless optimal monetary response to TFP shocks

Next, we consider TFP shocks, which affect the efficient allocation. In the standard New Key-
nesian model with Calvo prices, the response to such shocks is characterized by strict price
stability: the central bank steers real interest rates to replicate the path of natural interest rates,
which leads to inflation and the output gap remaining at zero. This is commonly known as the
“divine coincidence” (Blanchard and Galí 2007).

A version of the divine coincidence also holds in our economy.37 As we have shown in
Section 5.1, the Ramsey plan features a positive level of trend inflation in the long run. In
response to a TFP shock, optimal policy keeps inflation constant at this level:

PROPOSITION 4. The timeless Ramsey policy keeps inflation constant at steady state level in response
to aggregate TFP shocks.

PROOF. See Appendix C.

As inflation remains constant, the frequency of repricing and the price gap distribution
also stay constant. Strict targeting of the optimal steady-state inflation rate thus simultaneously
minimizes inefficient output fluctuations (the average markup gap) and the costs of nominal
rigidities (markup dispersion and adjustment costs). Notice that the shape of the Phillips curve
plays no role in this result, and thus the prescription is the same for small and large shocks.

5.3. Time-0 problem

We now turn to investigating the time inconsistency of optimal policy. To assess its magnitude,
we solve the optimal policy problem, starting from the price distribution in the Ramsey steady
state, assuming that the central bank faces no previous pre-commitment. In this case, the
Lagrange multipliers associated with forward-looking equations are initially set to zero. This
problem is often referred to as the “time-0 problem” (Woodford 2003).

The solid blue lines in Figure 11 show the time path under the optimal policy. The labor
subsidy is set to zero in this exercise, which, therefore, ceases to offset any markup distortions
caused by the firms’ market power. The steady state of the Ramsey policy is time-inconsistent:
without pre-commitment, the central bank engineers a temporary expansion. Thereby, it raises

37We thus generalize to the case of heterogeneous firms the finding of Nakov and Thomas (2014) of a divine
coincidence in response to TFP disturbances when pricing is state-dependent.
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FIGURE 11. Time inconsistency of the optimal policy.

The figure compares the time-0 optimal policies in the menu cost model and in the Calvo model. Inflation is
annualized 12π.

welfare by bringing output closer to its efficient level at a cost of elevated pricing distortions
arising from the higher inflation.

The dashed red line on Figure 11 shows the equivalent time-0 response in the Calvo model.
The figure shows that the incentive to surprise is substantially weaker in the menu cost model:
both the inflation and output gap increases are smaller relative to the Calvomodel. The reason is
that the price level becomes more flexible in the state-dependent model: the unexpected easing
causes a sizable inflation spike, which causes an increase in the frequency of price changes.
As a result, the output gap increases by less than it would under exogenous frequency. That is,
the output boost from a given amount of inflation is lower than under Calvo. Since, as we saw
before, the central bank’s objective function isn’t significantly different than under Calvo, the
central bank thus eases less aggressively.

There is a countervailing force that raises the time inconsistency in our baseline model
relative to the Calvo model. Namely, due to the idiosyncratic shocks, the uniform labor subsidy
of τ = 1/ϵ is insufficient to fully offset the markups for all firms in the steady state, as it does in
the Calvo model. A time-0 optimal policy, therefore, stays time inconsistent even with a τ = 1/ϵ
labor subsidy (not shown). The optimal policy easing in this scenario, however, is two orders of
magnitude smaller than those under no labor subsidy. Therefore, this channel is too weak to
counteract the opposite effect caused by the more flexible price level detailed above.

A corollary to the negligibility of the time inconsistency with an appropriate labor subsidy
is that the analysis in the previous sections, where we adopted a timeless perspective, would go
through without any quantitatively relevant changes also if we adopted a time-0 perspective.

6. Conclusion

This paper characterizes the Ramsey optimal monetary policy in a canonical menu cost model.
We find that in the presence of large cost-push shocks, optimal monetary policy should com-
mit to mitigating inflation more aggressively than what the standard New Keynesian model
prescribes. The central bank exploits the endogenous reduction in the sacrifice ratio brought
about by the increase in price flexibility in order to contain inflation more. That is, it strikes
while the iron is hot. Importantly, this nonlinearity can be quantitatively relevant already at
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moderately elevated inflation rates such as those seen during the recent inflation surge. This
policy prescription diverges markedly from that of the standard New Keynesian model with
exogenous timing of price adjustment, which fails to capture such nonlinear dynamics. When
confronted with TFP shocks, our findings indicate that the optimal policy in the menu cost
model involves a commitment to full price stability, akin to the standard New Keynesian model.

In sum, our research underscores the importance of an aggressive anti-inflationary policy
by the central bank in the face of large shocks. By committing to policies that curb inflation and
stabilize the repricing frequency, the central bank can deliver amore favorablemacroeconomic
outcome. Our analysis is confined to the case of nominal price rigidities in the canonical menu
cost models of Golosov and Lucas (2007) and Nakamura and Steinsson (2010); we leave for future
research the interaction with wage rigidities and assessment of optimal policy in more complex
and realistic price-setting frameworks.

APPENDIX

A. The simplifiedmodel

This appendix lays out the simplifiedmodel and provides the proofs for the related propositions.

Model description. As explained in themain text in Section 2.5, prices are reset overnight in the
simplified model. Thus, all dynamics are muted, such that the model boils down to a sequence
of static models.38 For this reason, we remove the time subscript in the simplified model.

As explained there, and after removing a number of trivially redundant equations and
variables, themodel boils down to the following eight equations, which define an equilibrium in
nine variables w,π,C,N, s, S, g0, gc(x), p∗, leaving the policy maker with one degree of freedom
to choose π:
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38Alternatively, the static model version can be seen as a particular case of the complete model in which we set
β = 0 and assume that the initial distribution is such that all firms have set the same price last period (gc

−1(x) = 0,
g0
−1 = 1, p∗−1 = 1)
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In the above, as in themain text, we define the distribution and value functions as a function
of the price gap x, as is common in the state-dependent pricing literature. However, for the
analysis of the simplified model, it is convenient to rather define them as a function of the
price level p ≡ x + p∗. The Ss bands will also be re-normalized accordingly. After this change of
variable, the system reads:
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Note that the firms decisions are much simpler than in the full model, since they are
static. The reset price maximizes firms’ current profits by setting a constant markup (41).
Furthermore, firms keep their (logged quality-adjusted real) price p unchanged as long as
current profits exceed profits under the optimal price p∗ minus the menu cost, that is when
∆Π(p) ≡ Π(p) − (Π (p∗) − ηw) > 0. ∆Π(p) has exactly 2 positive roots.39 One root is smaller
than p∗(s) , and one root is larger than p∗(S) and the function ∆Π(x) is positive between them.
Thus, these two roots define the Ss bands, which characterize the optimal update decision.

Phillips curve. We now show how we derive the Phillips curve displayed in Proposition 1. First,
we use equations (44)-(46) to eliminate g0, w and gc(p) from equations (41), (42), (43) and (47).
Then we use the resulting version of (41) to eliminate p∗ in the remaining 3 equations. This
leaves us with the following equations:
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39To see this consider the function ∆Π(p)(ep)ε. It is positive at p = p∗, negative at p = 0 and at p→∞, continuous
and concave for positive p. Thus it has 2 roots.
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The first two equations implicitly define the functions s(C,τ) and S(C,τ). A simple closed-
form solution for these limits exists if ε = 2. For ε = 3 and ε = 4 a more cumbersome closed-form
solution exists. Beyond that we have not found any closed form solution. Plugging those two
ex- or implicit functions into the last equation, we arrive at the Phillips curve in Proposition 1.
That is, we have compressed equations (41)- (47) into one single equation relating inflation and
output – the Phillips curve:
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Note that the terms C and τ only appear as the product C(1 − τ) in this expression. Thus, if
we express this Phillips curve in terms of the log of C, π(log(C);τ) changes in τ lead to parallel
horizontal shifts. To see this, consider a particular combination of π̄, C̄, τ̄ satisfying the above
Phillips curve. Now consider a different level of τ such that (1−τ) = (1− τ̄)x. To satisfy the above
equation for π = π̄, it must be that C = C̄/x. Thus log(C) = log(C̄) − log(x). This is a parallel
horizontal shift of the function π(log(C);τ).

Welfare. Finally, we proof Proposition 3. The central bank’s objective is given by the household’s
utility function,

U = log(C) −N (53)

That is, in the simplified model there is no difference between the planner having commitment
or not.

Using first the labor-market clearing condition (48) to eliminateN in the utility function, and
then the definition of frequency (46) to eliminate g0 and then the distribution (44) to eliminate
gc, we arrive at the following.

U = log(C) − C(∫
S

s
ep(−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (1 − ∫

S

s

1
σ
ϕ(

p + π
σ
)dp) ep

∗(−ϵ)
)

−η(1 − ∫
S

s

1
σ
ϕ(

p + π
σ
)dp) (54)

Using the firms’ reset price (41) to eliminate w in the Ss conditions (42), (43) we get:

ep
∗(1−ϵ)

−
ϵ − 1
ϵ

ep
∗(1−ϵ)

− η = es(1−ε) −
ϵ − 1
ϵ

es(1−ϵ), (55)

ep
∗(1−ϵ)

−
ϵ − 1
ϵ

ep
∗(1−ϵ)

− η = eS(1−ε) −
ϵ − 1
ϵ

eS(1−ϵ), (56)

Equations (55), (56), and the definition of the price level (47) together implicitly define
functions s(π), S(π) and p∗(π). Plugging these into the welfare function (54) we arrive at the
expression in the text:
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U = log(C) − C(∫
S(π)

s(π)
e(p)(−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (1 − ∫

S(π)

s(π)
1
σ
ϕ(

p + π
σ
)dx) ep

∗(π)(−ϵ)
)

−η [1 − ∫
S(π)

s(π)
1
σ
ϕ(

p + π
σ
)dp] (57)

This welfare function depends only on inflation and consumption. In the Calvo case without
idiosyncratic shocks, this representation of the welfare function, when approximated to second
order, yields the well-known loss function − 12 [ĉ

2
+ ϵ ( 1−θθ ) π̂

2
] (see Galí 2008) where the ’hat’

denotes deviation from the deterministic steady state.
In the menu cost model which we are interested in here, we can decompose the welfare gap

relative to the efficient allocation into 3 terms:

U −Ueff = log(C) − C − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup gap

−C(∫
S(π)

s(π)
e(p)(−ϵ)

1
σ
ϕ(

p + π
σ
)dp + (1 − ∫

S(π)

s(π)
1
σ
ϕ(

p + π
σ
)dx) ep

∗(π)(−ϵ)
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

−η(1 − ∫
S(π)

s(π)
1
σ
ϕ(

p + π
σ
)dp)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Adjustment costs

= − logµ − (
1
µ
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

−
1
µ
(ζµ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

− ηg0
°

.

Adjustment costs

B. Welfare decomposition

This appendix proves Proposition 2. It starts by proving three lemmas. The first describes
the relationship between output and the average welfare-relevant markup, the second the
relationship between price and markup dispersion and the third characterizes the efficient
allocation. We also suppress time subscripts for notational convenience.

LEMMA 1. Let the average welfare-relevant markup µ ≡ (∫ µ( j)1−ϵdj)
1

1−ϵ , where the welfare-relevant

markup is the the relative price of firm j divided by its welfare-relevant marginal cost: µ( j) = P( j)/P
WRMC( j) ,

and WRMC( j) ≡ wA( j)/A. Then in any market equilibrium there is a relationship between average
welfare-relevant markup and the output:

logY = logA − logµ (58)

or equivalently

Y =
A
µ

(59)

PROOF. In the proof, we first derive the real welfare-relevant marginal cost and define its
“aggregate component” that is common across firms. We show that this aggregate component is
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what affects the average welfare-relevant markup. Then derive an expression for the average
efficient markup gap, which proves the lemma.

The real welfare-relevant marginal cost of firm j is

WRMC( j) =
∂ (wN( j))
∂Y( j)

=
wA( j)
A

,

where we have used that N( j) = A( j)Y( j)/A.
Let the common real welfare-relevant marginal cost wrmc be defined as

wrmc ≡ (WRMC( j)/A( j)) = (w/A) = Y/A, (60)

Where we used the labor-market clearing condition eq. (7) and the definition of output Y = C
which together ensure that w = Y .

Thewelfare-relevantmarkupµ( j) is the relative price divided by the the realwelfare-relevant
marginal cost:

µ( j) =
P( j)
P
/
wA( j)
A

=
P( j)
A( j)P

/
w
A
=
ep( j)
wrmc

,

where p( j) is the logarithm of the quality-adjusted relative price.
The average welfare-relevant markup µ is

µ = (∫ µ( j)1−ϵdj)
1

1−ϵ
=

⎛

⎝
∫

ep( j)(1−ϵ)

wrmc1−ϵ
dj
⎞

⎠

1
1−ϵ

=
1

wrmc
(∫ ep( j)(1−ϵ)dj)

1
1−ϵ
=

1
wrmc

, (61)

where we used the observation that the average quality-adjusted relative price is one (eq. 6) in
equilibrium.

The lemma follows from equations (60) and (61).

We define the complete density g(p) ≡ gc(p) + g0δ(p), which includes both the continuous
term gc(p) defined in equation (20) and the dirac delta δ(p) times the frequency g0 defined in
equation (21). The second lemma shows the relationship between price dispersion and markup
dispersion.

LEMMA 2. Let the dispersion of the quality-adjusted relative prices be ζp ≡ ∫ ep(−ϵ)g(p)dp. Let the
markup dispersion be ζµ ≡ ∫ (µ(p)/µ)−ϵg(logµ(p) − logµ)dp. Then

ζp = ζµ. (62)

PROOF.

ζp = ∫ ep(−ϵ)g(p)dp = ∫ e(logµ(p)+logwrmc)(−ϵ)g(logµ(p) +wrmc)dp =

∫ e(logµ(p)−logµ)(−ϵ)g(logµ(p) − logµ)dp = ζµ

And the third lemma calculates output and labour under the efficient allocation. The lemma
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implies that the efficient output fluctuates with aggregate productivity but is independent of
demand shocks as well as of cost-push shocks.

LEMMA 3. Let Y e be the efficient output and Ne be the efficient labor., then

Ne =1,

Y e =A.
(63)

PROOF. Weobtain the efficient output as the solution to a social planning problem. The problem
maximizes household welfare in equation (1) subject to (i) the aggregate consumption equation
(3), (ii) aggregate labor supply in (Nt = ∫iNt( j)) and (iii) product-level production functions in
(10) with respect to product-level consumption and labor (Ct( j),Nt( j), j ∈ [0, 1], t = 0, 1, 2, . . . ).

After some algebra, the optimization problem simplifies to

max
Nt( j)

∞
∑

t=0
βt log [At (∫ Nt( j)

ϵ−1
ϵ di)

ϵ
ϵ−1
] − ∫ Nt( j)di,

subject to ∫ Nt( j)di = Nt.
It is straightforward to see that the optimization problem implies that the efficient labor

supply is equal across products (Net ( j) = N
e
t , for all t = 1, 2, . . . ). Furthermore, optimality requires

that Net = 1 for all t = 1, 2, . . . . From this, it is clear that Y et = AtN
e
t = At.

COROLLARY 1. The efficient product-level consumption (Ce( j)) varies across products j inversely
proportional to the product-level quality, in particular

Ce( j) =
ANe

A( j)
.

Under perfect foresight, the efficient real interest rate is implicitly defined by the Euler equation
after substituting in efficient consumption:

ret = − logβ − (1 − ρA) logAt

With Lemmas 1, 2, and 3, we are ready to prove Proposition 2. It is repeated here for
convenience.

PROPOSITION 5. Let U − Ue be the central bank’s utility gap relative to the utility under efficient
allocation expressed in efficient-consumption-equivalent units. The utility gap can be expressed as a
function of the average welfare-relevantmarkup (µ), themarkup dispersion (ζµ), and price adjustment
costs as

U −Ue = − logµ − (
1
µ
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Average markup

−
1
µ
(ζµ − 1)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

Markup dispersion

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Misallocation

− ηg0
°

Adjustment costs

, (64)

where the markup dispersion is ζµ ≡ ∫ (µ( j)/µ)−ϵg(logµ( j) − logµ)dj, and ηg0 are the price adjust-
ment costs in labor units.
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PROOF. We can express the difference between utility (U) from the utility in the efficient
equilibrium (Ue) as

U −Ue = (logC −N) − (logCe −Ne)

= (logY −N) − (logA − 1)

= − logµ −
Y
A ∫

ep(−ϵ)g (p)dp − ηg0 + 1

= − logµ − (
1
µ
ζ
µ
t − 1) − ηg

0

= − logµ − (
1
µ
− 1) −

1
µ
(ζµ − 1) − ηg0

where Ue is the utility in the efficient equilibrium. The first step of the derivation uses the
definition of output Y = C and the efficient output Y e = A. The second step uses Lemma 1 and
the labor market equilibrium (23). The third step uses Lemma 2.

C. Response to TFP shocks

This appendix proves that, in response to a TFP shock, optimal timeless commitment policy
keeps inflation at its steady-state level πt = π.

The central bank’s problem is:

max
{gct (⋅), g

0
t ,Vt(⋅),Ct,Nt,

wt, p∗t , st,St,π
∗
t }
∞
t=0

∞
∑

t=0
βt (logCt −Nt)

subject to

wt = Ct,

Nt =
Ct
At
(∫

St

st
e(x+p

∗

t )(−ϵt)gct (p)dx + g
0
t e
(p∗t )(−ϵ)) − ηg0t

Vt(x) = Πt(x) +
Λt,t+1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

Vt+1(x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′ +

Λt,t+1
⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(Vt+1 (0) − ηwt+1)] ,

Vt (st) = Vt (0) − ηwt,

Vt (St) = Vt (0) − ηwt,

0 = Π′t(0) +
Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1) .

gct (x) =
1
σ
∫

St−1

st−1
gct−1(x−1)ϕ(

x−1 − x − π∗t
σ

)dx−1 + g0t−1ϕ(
−x − π∗t

σ
) ,
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g0t = 1 − ∫
St

st
gct (x)dx,

1 = ∫
St

st
e(x+p

∗

t )(1−ϵ)gct (x)dx + g
0
t e
(p∗t )(1−ϵ).

We now transform it in a convenient fashion. First, normalize the constraints involving
Vt(x) by At and substitute for the wage wt = Ct and the discount factor Λt,t+1 = β Ct

Ct+1 . With this,
the constrains involving Vt(x) become:

Vt(x)
At

=
Ct
At
(exp (xt + p∗t ))

1−ϵ
−
Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+β
At+1
At

Ct
Ct+1

1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

Vt+1(x′)
At+1

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′

+
At+1
At

β
Ct
Ct+1

⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(
Vt+1 (0)
At+1

− η
Ct+1
At+1
)] ,

Vt (st)
At

=
Vt (0)
At

− η
Ct
At
,

Vt (St)
At

=
Vt (0)
At

− η
Ct
At
,

0 = (1 − ϵ)
Ct
At
(exp (xt + p∗t ))

1−ϵ
+ ϵ

Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+
1
σ
β
At+1
At

Ct
Ct+1

∫

St+1

st+1

Vt+1(x′)
At+1

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+
1
σ
β
At+1
At

Ct
Ct+1

(ϕ(
−St+1 − π∗t+1

σ
) −ϕ(

−st+1 − π∗t+1
σ

))(
Vt+1(0)
At+1

− η
Ct+1
At+1
) .

Second, define Vt(x)
At ≡ V̂t(x), so that these constrains become

V̂t(x) =
Ct
At
(exp (xt + p∗t ))

1−ϵ
−
Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+β
Ct
At
At+1
Ct+1

1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

V̂t+1(x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′

+β
Ct
At
At+1
Ct+1

⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(V̂t+1(0) − η
Ct+1
At+1
)] ,

V̂t (st) = V̂t (0) − η
Ct
At
,

V̂t (St) = V̂t (0) − η
Ct
At
,

0 = V̂ ′t (0) = (1 − ϵ)
Ct
At
(exp (xt + p∗t ))

1−ϵ
+ ϵ

Ct
At
(1 − τt)

Ct
At
(exp (xt + p∗t ))

−ϵ

+
1
σ
β
Ct
At
At+1
Ct+1

∫

St+1

st+1
V̂t+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′
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+
1
σ
β
Ct
At
At+1
Ct+1

(ϕ(
−St+1 − π∗t+1

σ
) −ϕ(

−st+1 − π∗t+1
σ

))(V̂(0) − η
Ct+1
At+1
) .

Finally, define Ĉt = Ct
At . The central bank’s problem becomes

max
{gct (⋅), g

0
t , V̂t(⋅), Ĉt,

wt, p∗t , st,St,π
∗
t ,Lt}

∞
t=0

∞
∑

t=0
βt (log (Ĉ) + log (At) − Lt)

V̂t(x) = Ĉt (exp (xt + p∗t ))
1−ϵ
− Ĉt(1 − τt)Ĉt (exp (xt + p∗t ))

−ϵ

+βĈtĈ−1t+1
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

V̂t+1(x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′

+βĈtĈ−1t+1
⎛

⎝

1 −
1
σ
∫

St+1

st+1

⎡
⎢
⎢
⎢
⎢
⎣

ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′
⎞

⎠

[(V̂t+1(0) − ηĈt+1)] ,

V̂t (st) = V̂t (0) − ηĈt,

V̂t (St) = V̂t (0) − ηĈt,

0 = V̂ ′t (0) = (1 − ϵ)Ĉt (exp (xt + p
∗
t ))

1−ϵ
+ ϵĈt(1 − τt)Ĉt (exp (xt + p∗t ))

−ϵ

+
1
σ
βĈtĈ−1t+1∫

St+1

st+1
V̂t+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+
1
σ
βĈtĈ−1t+1 (ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(V̂(0) − ηĈt+1) .

Nt = Ĉt (∫
St

st
e(x+p

∗

t )(−ϵt)gct (p)dx + g
0
t e
(p∗t )(−ϵ))

gct (x) =
1
σ
∫

St−1

st−1
gct−1(x−1)ϕ(

x−1 − x − π∗t
σ

)dx−1 + g0t−1ϕ(
−x − π∗t

σ
) ,

g0t = 1 − ∫
St

st
gct (x)dx,

1 = ∫
St

st
e(x+p

∗

t )(1−ϵ)gct (x)dx + g
0
t e
(p∗t )(1−ϵ).

Notice that TFP At only appears in the objective in a separable way. Therefore, the redefined
Ramsey policy is independent of TFP shocks. Going back to the original variables definition,
this implies that under optimal policy Ct ∝ At and Vt(x) ∝ At while all other variables remain
constant at their steady-state values. Thus, inflation πt also remains constant at its steady-state
value.
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ONLINE APPENDIX – Not for publication

Appendix D. Optimality condition of the reset price

If the post decision value function V(⋅) is convex, the optimal reset price is fully characterized
by the system of first-order conditions in Section 2.2.40 This appendix presents the derivation
of V ′t (0).

To start, we reproduce the value function presented in equation (17), which we the rewrite
usingΦ (⋅) to denote the standard normal c.d.f.

Vt(x) = Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

x − x′ − π∗t+1
σ

)]dx′)(Vt+1 (0) − ηwt+1)

Vt(x) = Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 − [Φ(
x − st+1 − π∗t+1

σ
) −Φ(

x − St+1 − π∗t+1
σ

)]) (Vt+1 (0) − ηwt+1)

Taking the derivative of Vt(x) with respect to x and reformulating, we get V ′t (x):

V ′t (x) = Π′t(x) +
Λt,t+1
σ

∂ ∫
St+1
st+1 Vt+1(x

′
)ϕ(

x−x′−π∗t+1
σ )dx′

∂x

+

Λt,t+1
σ
(ϕ(

x − St+1 − π∗t+1
σ

) −ϕ(
x − st+1 − π∗t+1

σ
))(Vt+1(0) − κwt+1)

= Π′t(x) +
Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x
dx′

+

Λt,t+1
σ
(ϕ(

x − St+1 − π∗t+1
σ

) −ϕ(
x − st+1 − π∗t+1

σ
))(Vt+1(0) − κwt+1)

which must be evaluated at x = 0.

Appendix E. Comparison of static models and full model

This table compares the static Calvo model, the static Golosov-Lucas model and the dynamic
Golosov Lucas model equation by equation. Note that the support of the distribution and value
functions in the dynamic model is x, while it is p in the static model, where p = p∗ + x .

40We verify convexity ex post.
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Expression Static Calvo Static Golosov-Lucas Dynamic Golosov-Lucas

Labor supply C = w C = w C = w

Price level 1 = (1 − θ)( 1
eπ )

1−ϵ
+ θ p∗ 1 = ∫

S
s e

p(1−ϵ)gc(p;π)dp + g0 ep
∗
(1−ϵ) 1 = ∫

S
s e
(x+p∗t )(1−ε)gt(x)dx

Price star p∗ = ϵ
ϵ−1(1 − τ)w p∗ = ϵ

ϵ−1(1 − τ)w
0 = Π′t(0) +

Λt,t+1
σ
∫
St+1
st+1 Vt+1(x

′)
∂ϕ( x−x

′
−π∗t+1
σ )

∂x
dx′

+
Λt,t+1
σ
(ϕ(−St+1−π

∗

t+1
σ ) −ϕ(−st+1−π

∗

t+1
σ ))(Vt+1(0) − ηwt+1)

Labor clearing N = C[θ (p∗)−ε + (1 − θ)( 1
eπ )
−ε
] N = C(∫

+∞

−∞
ep(−ϵ)gc(p;π)dp + g0 ep

∗
(−ϵ)) + η g0 N = Ct

At
(∫

St
st e
(x+p∗t )(−ϵt)gct (p)dx + g0t ep

∗

t (−ϵ)) − η g0t

Lower bound -
(p∗)1−ε − (1 − τ)w (p∗)−εC − ηC

= s1−ε − (1 − τ)w s−εC
Vt(0) − ηwt = Vt(st)

Upper bound -
(p∗)1−ε − (1 − τ)w (p∗)−εC − ηC

= S1−ε − (1 − τ)w s−εC
Vt(0) − ηwt = Vt(St)

Price change freq g0 = θ g0 = 1 − ∫
S
s g

c(p + π)dp g0t = 1 − ∫
St
st g

c
t (x)dx

Price gap density - - gct (x) =
1
σ
∫
St−1
st−1 gct−1(x−1)ϕ(

x−1 − x − π∗t
σ

)dx−1 + g0t−1ϕ(
−x − π∗t

σ
)

Bellman equation - -

Vt(x) = Π(x, p∗t ,wt ,At)

+
Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)ϕ(

(x − x′) − π∗t+1
σ

)dx′

+Λt,t+1
⎛
⎝
1 − 1

σ
∫

St+1

st+1
ϕ((x − x

′) − π∗t+1
σ

)dx′
⎞
⎠

×(Vt+1(0) − ηwt+1)
Variable count 6 8 10
Equation count 5 7 9

TABLE A1. Comparison of Different Models
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Appendix F. Computational algorithm

This appendix explains the computational method. We use a three-step approach to convert
the original infinite-dimensional Ramsey problem into a finite-dimensional one. First, we
approximate the distribution and value functions by piece-wise linear functions over a set of
nodes. Second, we use endogenous nodes, such that both bounds of the (st,St) band and the
optimal reset price are “on the grid”. Third, given this approximation, we evaluate integrals
analytically. Step one makes the problem finite dimensional. Steps two and three ensure that
the approximation is accurate, smooth and computationally efficient. We explain those steps in
detail below.

Once we have converted the central bank’s infinite-dimensional problem into a finite-
dimension problem in this way, we derive the central bank’s first order conditions. For this we
use symbolic differentiation, and in particular Dynare’s Ramsey command. The resulting set
of first order conditions is then solved in the sequence space under perfect foresight. Here we
employ a standard Newton method using Dynare’s perfect foresight solver command.

To determine the appropriate initial and terminal conditions, and an initial guess for the
transition paths, we need to find the non-stochastic steady state of the model. We determine the
steady state of the private equilibrium conditional on a particular value of the policy instrument
π using a standard Newton based solution method. We then use this function and exploit the
linearity of the first order conditions with respect to the Lagrange multipliers to convert the
high-dimensional problem of solving for the steady state into a one-dimensional problem,
which is solved with a Newton solver. This last step is performed by Dynare’s steady command.
That is, we manually convert the problem into a finite-dimension problem and find the steady
state conditional on a policy; the rest of the procedure uses Dynare.

The rest of the appendix explains those steps that are not straightforward applications of
existing methods. It is organized as follows. First we explain how to make the central bank’s
problem finite dimensional. For this purpose, we first define some useful auxiliary functions in
Section F.1. Then we transform the equilibrium conditions to apply an endogenous grid and
approximate the value and distribution functions by a piece-wise linear function in Section
F.2. Finally, we evaluate the integrals analytically in Section F.3. The result is a discrete set
of equations that can conveniently be represented in matrix form, which we summarized in
Section F.4. Second, we explain how we determine the steady state in Section F.5.

F.1. Preliminaries

To begin with, let us normalize the variable xt as

xt =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xt
st if xt < 0
xt
St otherwise

(A1)

Under this normalization, the optimal price is at xt = 0, the upper limit of the (S, s) band
at xt = 1 and the lower limit of the (S, s) band at xt = −1. This will later allow us to have all
critical points (st,St, p∗t ) on the grid. The law of motion of xt conditional on not updating can
be derived from xt = xt−1 − σεt − π∗t :
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xt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

xt
St =

xt−1−σεt−π∗t
St =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xt−1−σεt−π∗t
St−1

St−1
St = xt−1

St−1
St −

σεt+π∗t
St if xt > 0, if xt−1 > 0

xt−1−σεt−π∗t
st−1

st−1
St = xt−1

st−1
St −

σεt+π∗t
St if xt > 0, if xt−1 < 0

xt
st =

xt−1−σεt−π∗t
st =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xt−1−σεt−π∗t
St−1

St−1
st = xt−1

St−1
st −

σεt+π∗t
st if xt < 0, if xt−1 > 0

xt−1−σεt−π∗t
st−1

st−1
st = xt−1

st−1
st −

σεt+π∗t
st if xt < 0, if xt−1 < 0

(A2)

We now define functions to be used in the next sections to redefine the value and distri-
bution functions. For compactness, let us adopt the notation where ŝt(xt) picks the respective
extremes (S, s) depending on the value of xt following (A1). For brevity, at times we will drop
the dependence on xt and just write ŝt.

Solving (A2) for xt, xt−1 and ε respectively, we obtain the following relations:

xt = xt−1
ŝt−1
ŝt
−

σεt + π
∗
t

ŝt
(A3)

xt−1 = xt
ŝt
ŝt−1
+

σεt + π
∗
t

ŝt−1
(A4)

εt =
ŝt−1xt−1 − ŝtxt − π∗t

σ
≡ h(xt−1, xt) (A5)

where we have defined h(xt−1, xt) for later use.

F.2. Approximating the distribution and value functions by piecewise linear functions on
an endogenous grid

Nowwe redefine the value and distribution functions over the variable x and approximate them
by piece-wise linear functions. The original infinite-dimensional problem of the central bank
is laid out in Section 3.1. In the following, we consider each of the equations that contain the
distribution and value functions one by one.

F.2.1. Distribution

The distribution function is given by

gt(x) ≡ gct (x) + g
0
t δ(x).

where

gct (x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
σ ∫

St−1
st−1 g

c
t−1(x−1)ϕ(

x−1−x−π∗t
σ )dx−1 + g0t−1ϕ(

−x−π∗t
σ ) , if x ∈ [st,St],

0, otherwise,
(A6)

g0t = 1 − ∫
St

st
gct (x)dx.

Now we rewrite the distribution using the newly defined re-normalized x where x = xŝt as in
equation (A1): define gct (xŝt) ≡ gct(x) and write
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gct(x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

∫

1
−1

ŝt−1(x′)
σ gct−1(x

′
)ϕ (h(x′, x))dx′ + g0t−1ϕ(

−x−π∗t
σ ) , if x ∈ [−1, 1],

0, otherwise,
(A7)

g0t =1 − ∫
1

−1
gct (x) ŝt(x)dx. (A8)

To see where this comes from, note that for the latter expression for g0t we have applied a
simple change of variable to the integral. In particular, we have used the following substitution:

∫

St

st
gct (x)dx = ∫

St

st
gct (xŝt(x))dxŝt(x)

= ∫

St

st
gct(x)dxŝt(x) = ∫

St /̂st(x)

st /̂st(x)
ŝt(x)gct(x)dx = ∫

1

−1
ŝt(x)gct(x)dx.

Next, we will also change the variable in the integral in the equation for gct(x) (A7). This
change of variable is a bit more involved. First, we re-express (A6) as

gct(x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
σ ∫

St−1
st−1 gct−1(x−1)ϕ(

x−1 ŝt−1−xŝt−π∗t
σ )d(x−1ŝt−1) + g0t−1ϕ(

−xŝt−π∗t
σ ) , if x ∈ [−1, 1],

0, otherwise,

Second, we split the integral in two parts at 0 (and we drop the second line of the above
expression for brevity)

gct(x) =
1
σ
∫

0

st−1
gct−1(x−1)ϕ(

x−1st−1 − xŝt − π∗t
σ

)d(x−1st−1)

+
1
σ
∫

St−1

0
gct−1(x−1)ϕ(

x−1St−1 − xŝt − π∗t
σ

)d(x−1St−1)

+g0t−1ϕ(
−xŝt − π∗t

σ
) if x ∈ [−1, 1],

Now we do a change of variable: integrate over x−1 instead of x−1st−1

gct(x) = ∫
0

1

st−1
σ

gct−1(x−1)ϕ(
x−1st−1 − xŝt − π∗t

σ
)dx−1

+∫

1

0

St−1
σ

gct−1(x−1)ϕ(
x−1St−1 − xŝt − π∗t

σ
)dx−1

+g0t−1ϕ(
−xŝt − π∗t

σ
) if x ∈ [−1, 1],

Finally, pasting the two integrals together again, re-denoting x−1 by x′ and using h(x′, x) we
get expression (A7). This concludes the explanation of the change of variables.

So far we have rewritten the law of motion of the firm distribution gt. We now introduce the
approximation we rely on for gt. We approximate gc by a piece-wise linear function with equally
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spaced nodes x1, . . . , xI = −1, . . . , 0, . . . , 1 with gct(x∣xi < x < xi+1) ≈ gct(xi) +
x−xi

xi+1−xi
gct−1(xi+1)−gct−1(xi)

xi+1−xi .
Note that the auxiliary grid for x is exogenous. However, this exogenous auxiliary grid

defines an endogenous grid for x = ŝtx, which, at each t, exactly spans the (s,S) band and has a
node at 0. Figure A1 illustrates the use of linear interpolation with an endogenous grid as we
apply it here.

From now on, gct denotes the piece-wise linear approximated function, and gct(xi < x < xi+1)
denotes a linear piece of it. Thus, the functions are approximated as

gct(x) =
I−1
∑

i=1
∫

xi+1
xi

ŝt−1(x′)
σ

gct−1(xi < x′ < xi+1)ϕ (h(x
′, x)) dx′ + 1

σ
g0t−1ϕ (h(0, x)) ,

g0t = 1 −
I−1
∑

i=1
∫

xi+1
xi

gct(xi < x < xi+1)ŝt(x)dx.

Notice that in these expressions, the integrands are continuous in the interval xi < x < xi+1
since x and x′ are of constant sign.

Also note that the distribution function is 0 outside the (S,s) band. Our piecewise linear
gct in fact is only defined over the range where the distribution has positive mass, that is, for
x ∈ [−1, 1]. This is computationally efficient.

Within this range = 1 so we can drop it from the expression above.

gct(x) =
⎡
⎢
⎢
⎢
⎢
⎣

I−1
∑

i=1
∫

xi+1
xi

ŝt−1(x′)
σ

gct−1(xi < x′ < xi+1)ϕ (h(x
′, x)) dx′ + 1

σ
g0t−1ϕ (h(0, x))

⎤
⎥
⎥
⎥
⎥
⎦

F.2.2. Other Aggregation Equations

The equilibrium conditions contain two additional aggregation equations that contain the
function g(⋅), for whichwe use the piece-wise linear approximation of gc(⋅). Recall the aggregate
price index and the labor market clearing condition

ep
∗

t (ϵ−1) = ∫ ex(1−ϵ)gt(x)dx,

Nt =
Ct
At
ep
∗

t (−ϵ)
∫ ex(−ϵ)gt(x)d(x) + η∫ λt(x + p∗t − σεt − π

∗
t )gt−1(x)d(x)

which we approximate as follows, after the change of variable to x,

ep
∗

t (ϵ−1) =
I−1
∑

i=1
∫

xi+1
xi

ex(1−ϵ)gct(xi−1 < x < xi+1)ŝt(x)dx + g0t ,

Nt =
Ct
At
ep
∗(−ϵ)

I−1
∑

i=1
∫

xi+1
xi

(ex(−ϵ)gct(xi−1 < x < xi+1)ŝt(x)dx + g0t−1) + ηg0t−1.

47



F.2.3. Value Function

Recall the value function is

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

)]dx′

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

x − x′ − π∗t+1
σ

)]dx′)(Vt+1 (0) − ηwt+1)

We now express it in terms of x with Vt(x) ≡ Vt(xŝt):

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

St+1

st+1
[Vt+1(x′)ϕ(

xŝt − x′ŝt+1 − π∗t+1
σ

)]dx′ŝt+1

+Λt,t+1 (1 −
1
σ
∫

St+1

st+1
[ϕ(

xŝt − x′ŝt+1 − π∗t+1
σ

)]dx′ŝt+1)(Vt+1 (0) − ηwt+1)

Note that, in equilibrium it must hold that Vt(0) − ηwt+1At+1 = Vt(−1) = Vt(1) and V′t(0) = 0. The
first two equalities are straightforward; the next subsection discusses the latter.

After the change of variable to x′, which is analogous to the change of variable applied to gct
previously, we can rewrite Vt(x) as

Vt(x) =Πt(x) +
Λt,t+1
σ
∫

1

−1
[ŝt+1(x′)Vt+1(x′)ϕ (h(x, x′))]dx′

+Λt,t+1 (1 −
1
σ
∫

1

−1
[ŝt+1(x′)ϕ (h(x, x′))]dx′)(Vt+1 (0) − ηwt+1)

So far, we have normalized the support of the value function. In addition, it is convenient
to normalize the value function itself. We normalize the value function by its maximal value
Vt(0), and denote the normalized value function by vt(x): vt(x) ≡ Vt(x)−Vt(0). The expression
above can be re-written as:

vt(x) ≡ Vt(x) −Vt(0) = Πt(x) −Πt(0)

+

Λt,t+1
σ
(∫

1

−1
ŝt+1(x′) [Vt+1(x′)ϕ(

x − x′ − π∗t+1
σ

) −Vt+1(x′)ϕ(
0 − x′ − π∗t+1

σ
)]dx′)

+

Λt,t+1
σ
(−∫

1

−1
ŝt+1(x′) [ϕ(

x − x′ − π∗t+1
σ

) −ϕ(
0 − x′ − π∗t+1

σ
)]dx′)(Vt+1(0) − ηwt+1)

= Πt(x) −Πt(0)

+

Λt,t+1
σ
(∫

1

−1
ŝt+1(x′) [vt+1(x′)(ϕ(

x − x′ − π∗t+1
σ

) −ϕ(
0 − x′ − π∗t+1

σ
))]dx′)

+

Λt,t+1
σ
(−∫

1

−1
ŝt+1(x′) [ϕ(

x − x′ − π∗t+1
σ

) −ϕ(
0 − x′ − π∗t+1

σ
)]dx′)(−ηwt+1)

Following our approach for gc(⋅), we approximate v(⋅) by a piece-wise linear function with
nodes x1, . . . , xI = −1, . . . , 0, . . . , 1 with vt(x∣xi < x < xi+1) ≈ vt(xi) +

x−xi
xi+1−xi

vt(xi+1)−vt(xi)
xi+1−xi .

From now on, vt denotes the piece-wise linear approximated function and vt(xi < x < xi+1)
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denotes a linear piece of it. Thus, this function vt(x) is approximated as

vt(x) =Πt(x) −Πt(0)

+

Λt,t+1
σ

I−1
∑

i=1
∫

xi+1
xi

ŝt+1(x′)vt+1(xi < x′ < xi+1)(ϕ (h(x, x
′
)) −ϕ (h(0, x′)))dx′

+

Λt,t+1
σ
(−ηwt+1)∫

1

−1
ŝt+1(x′)(ϕ (h(x, x′)) −ϕ (h(0, x′)))dx′.

F.2.4. Optimality condition for the reset price

We proceed in the same way for the derivative of the value function. We start with

0 = V ′t (0) = Π
′
t(0) +

Λt,t+1
σ
∫

St+1

st+1
Vt+1(x′)

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

where

∂ϕ(
x−x′−π∗t+1

σ )

∂x

RRRRRRRRRRRRRRRRRx=0

=
1

√

2πσ
−π∗t+1 − x

′

σ
e
− 12(

−π∗t+1−x
′

σ )
2

,

=

ϕ(
−π∗t+1−x′

σ )

σ

−π∗t+1 − x
′

σ

After change of variable to x, this expression becomes

0 = Π′t(0) +
Λt,t+1
σ
∫

1

−1
ŝt+1(x′)Vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1) .

Now we re-express this in terms of v(x) using Vt(x) = vt(x)+Vt(0) first, and the rearranging

0 = Π′t(x) +Λt,t+1∫
1

−1
ŝt+1(x′) (vt+1(x′) +Vt+1(0))h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

= Π′t(x) +Λt,t+1∫
1

−1
ŝt+1(x′)vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+Λt,t+1∫
1

−1
ŝt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′Vt+1(0)
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+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

= Π′t(x) +Λt,t+1∫
1

−1
ŝt+1(x′)vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

−

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))Vt+1(0)

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(Vt+1(0) − ηwt+1)

= Π′t(0) +Λt,t+1∫
1

−1
ŝt+1(x′)vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1)

and apply the piece-wise linear approximation of v(x):

0 = Π′t(0) +Λt,t+1
I−1
∑

i=1
∫

1

−1
ŝt+1(x′)vt+1(xi < x′ < xi+1)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) .

F.3. Solving for Integrals

Let us collect the approximated equations defined so far.

vt(x) =Πt(x) −Πt(0)

+

Λt,t+1
σ

I−1
∑

i=1
∫

xi+1
xi

ŝt+1(x′)vt+1(xi < x′ < xi+1)(ϕ (h(x, x
′
)) −ϕ (h(0, x′)))dx′

+

Λt,t+1
σ
(−ηwt+1)∫

1

−1
ŝt+1(x′)(ϕ (h(x, x′)) −ϕ (h(0, x′)))dx′,

(A9)

0 = Π′t(0) +Λt+1∫
1

−1
ŝt+1vt+1(x′)h(0, x′)

ϕ (h(0, x′))
σ

dx′

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) ,

(A10)

gct(x) =
I−1
∑

i=1
∫

xi+1
xi

ŝt−1(x′)
σ

gct−1(xi < x′ < xi+1)ϕ (h(x
′, x)) dx′ + 1

σ
g0t−1ϕ (h(0, x)) , (A11)

g0t = 1 −
I−1
∑

i=1
∫

xi+1
xi

gct(xi < x′ < xi+1)ŝt(x)dx, (A12)

ep
∗

t (ϵ−1) =
I−1
∑

i=1
∫

xi+1
xi

e(x)(1−ϵ)gct(xi < x′ < xi+1)ŝt(x)dx + g0t , (A13)

Nt =
Ct
At
ep
∗

t (−ϵ) ⎛

⎝

I−1
∑

i=1
∫

xi+1
xi

ex(−ϵ)gct(xi−1 < x < xi+1)ŝt(x)dx + g0t−1
⎞

⎠

+ ηg0t−1. (A14)
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The integrals in all of these expressions can be computed analytically, since the integrands
consist of affine functions multiplied by expressions that have closed-form anti-derivatives.
Figure A2 illustrates this graphically for the integral in the equation for gct(x) (A11).

We now determine the solution of these integrals, equation by equation. Given the coeffi-
cients of the affine functions, which depend on the values of vt+1(gt−1) at the grid points xi, we
can then write the solutions as a function that is linear in the elements of the vector vt+1(xi)
(gt−1(xi)). We now explain this for the simple case of the integral in equation A12. The other
equations require more tedious algebra, which we conveniently executed using symbolic math
and which we omit here for brevity, but are conceptually equivalent.

F.3.1. Mass Point

The integral over an affine function f (x) from x1 to x2 is given by

∫

x2

x1
f (x)dx =

( f (x1) + f (x2))
2

(x2 − x1)

thus
I−1
∑

i=1
∫

xi+1

xi
f (x)dx =

I−1
∑

i=1

( f (xi) + f (xi+1))
2

(xi+1 − xi).

Collecting the common terms on the right-hand side we get

I−1
∑

i=1
∫

xi+1

xi
f (x)dx =

∆x
2
⎛

⎝

f (x1) + 2
I−1
∑

i=2
f (xi) + f (xI)

⎞

⎠

.

Applying this formula to equation (A12), which defines the mass point at x = 0, and re-
arranging terms we get

g0t = 1 − eTt gct (A15)

where eTt = [0.5, 1, . . . , 1, 0.5]∆x. Note that this formula corresponds to the trapezoid rule. The
blue area in Figure A1 illustrates the application of the trapezoid rule.

F.3.2. Aggregate Price Index

By the same logic, the aggregate price index in (A13) is computed as

ep
∗

t (ϵ−1) =
I
∑

i=1
(gct(xi)1i≠1dt,i,i−1,1−ε + gct(xi)1i≠Idt,i,i+1,1−ε) + g0t (A16)

where

dt,i, j,ε =
(e(ϵ)xi ŝt,i ((ϵ) (xiŝt,i − x j ŝt, j) − 1) + e

(ϵ)x j ŝt, j)

(ϵ)2 (xiŝt, i − x j ŝt, j)

and where ŝt,i ≡ ŝt(xi) and where 1i≠1 and 1i≠I are indicator functions equal to 1 when i is
different from 1 or I, that is whenever gct(xi) is evaluated at the bounds of the (S, s) band. It
plays a similar role as the values 0.5 at the two extremes of the vector eTt above.
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Hence, we can re-write equation (A16) in matrix form as

ep
∗

t (ϵ−1) = dTt,1−εg
c
t + g0t (A17)

where gct is the vector collecting the values of the the distribution function gct at the grid points
and where the vector dt,1−ε is

dt,1−ε = [1i≠1dt,i,i−1,1−ε + 1i≠Idt,i,i+1,1−ε]
I

i=1
.

Here we have adopted the notation that [xi]
I
i=1 denotes a I × 1 vector with elements xi.

F.3.3. Labor Market

Following the previous subsection, the labor market condition (A14) is computed as

Nt =
Ct
At
ep
∗

t (−ϵ) ⎛

⎝

I
∑

i=1
(gct(xi)1i≠1dt,i,i−1,−ε + gct(xi)1i≠Idt,i,i+1,−ε) + g0t−1

⎞

⎠

+ ηg0t−1

which we re-write in matrix form as

Nt =
Ct
At
ep
∗

t (−ϵ) (dTt,−εgct + g0t−1) + ηg0t−1. (A18)

F.3.4. Distribution

Once we have evaluated the integrals, the distribution function in (A11) can be written as:

gct(x j) =
I
∑

i=1

1
2
√

2π
gct−1(xi) [1i≠1 f t,i,i−1, j + 1i≠I f t,i,i+1, j] +

1
σ

g0t−1ϕ(
−ŝt, jx j − π∗t

σ
) (A19)

where from now on, π without time subindex, denotes the scalar π, f t,i,̄i, j and Pt,i, j are defined
as

f t,i,̄i, j =

√

2π (Pt ,̄i, j)(erf(
Pt ,̄i, j√
2σ
) − erf(

Pt,i, j√
2σ
)) + 2σ(exp(−

Pt ,̄i, j
2

2σ2 ) − exp(−
Pt,i, j

2

2σ2 ))

∣xiŝt−1,i − x̄iŝt−1,̄i∣
,

Pt,i, j = −xiŝt−1,i + x j ŝt, j + π
∗
t .

For compactness, define

gct ≡ [g
c
t(x j)]

I

j=1

Ft ≡ [
1

2
√

2π
(1i≠1 f t,i,i−1, j + 1i≠I f t,i,i+1, j)]

I,I

j=1,i=1
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ft ≡ [
1
σ
ϕ(
−ŝt, jx j − π∗t

σ
)]

I

j=1

where gct and ft are vectors with the probability mass function gct and the scaled and shifted
normal distribution at the grid points, respectively, Ft is a matrix that captures the idiosyn-
cratic transitions due to firm-level quality shocks and where we have adopted the notation that

[xi, j]
J,I

j=1,i=1
denotes a J × I matrix with elements x j,i. Thus, equation A19 can be represented in

matrix form as

gct = Ftg
c
t−1 + ftg

0
t−1. (A20)

F.3.5. Value function

Once we have evaluated the integrals, and denoting the standard normal cdf byΦ(⋅) and the
central grid point by i0 (i.e. for xi0 = 0), the value function A9 can be written as

vt(x j) = Π j,t −Π j,t(0)

+Λt,t+1
I
∑

i=1

1
2
√

2π
vt+1(xi) (1i≠1(at,i,i−1, j − at,i0,i0−1, j) + 1i≠I(at,i,i+1, j − at,i0,i0+1, j))

+Λt,t+1 (−ηwt+1)(Φ(
Pt+1, j,I

σ
) −Φ(

Pt+1, j,1
σ
) −Φ(

Pt+1,i0,I
σ

) +Φ(
Pt+1,i0,1

σ
))

(A21)

where

at,i,̄i, j =

√

2π (Pt+1, j,̄i)(erf(
Pt+1, j,̄i√

2σ
) − erf(

Pt+1, j,i√
2σ
)) + 2σ

⎛

⎝

exp
⎛

⎝

−

(Pt+1, j,̄i)
2

2σ2
⎞

⎠

− exp(−
(Pt+1, j,i)2

2σ2 )

⎞

⎠

∣xiŝt+1,i − x̄iŝt+1,̄i∣
.

(A22)
For compactness, let us define

vt ≡ [vt(x j)]
I

j=1
,

Πt ≡ [Π j,t −Π j,t(0)]
I

j=1
,

At ≡ [Λt,t+1
1

2
√

2π
(1i≠1(at,i,i−1, j − at,i0,i0−1, j) + 1i≠I(at,i,i+1, j − at,i0,i0+1, j))]

I,I

j=1,i=1
,

bt+1 ≡ [Λt,t+1 (Φ(
Pt+1, j,I

σ
) −Φ(

Pt+1, j,1
σ
) −Φ(

Pt+1,i0,I
σ

) +Φ(
Pt+1,i0,1

σ
))]

I

j=1

where vt and bt+1 are vectors that evaluate the value function vt and the adjustment probability
at different grid points,Πt is the vector of profit differences, while At is a matrix that represents
the idiosyncratic transition due to firm-level quality shocks and price updating. Thus, equation
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(A21) can be represented in matrix form as

vt = Πt + [Atvt+1 − bt+1ηwt+1]. (A23)

F.3.6. Optimality condition for the reset price

After evaluating the integral, we can write the optimality condition in (A10) as

0 = Π′t(0) +Λt,t+1
I
∑

i=1
vt+1(xi)

1
2
(1i≠1ct,i,i−1,i0 + 1i≠Ict,i,i+1,i0)

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1)

(A24)

where

ct,i,̄i, j =
erf(

Pt+1, j,i√
2σ
) − erf(

Pt+1, j,̄i√
2σ
)

xiŝt+1,i − x̄iŝt+1,̄i
−

√

2
π exp(−

(Pt+1, j,i)2

2σ2 )

σ
. (A25)

We can write this equation using matrix notation:

0 = Π′t(0) + c
T
t+1vt+1

+

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1)

(A26)

where

ct+1 = [Λt,t+1
1
2
(1i≠1ct,i,i−1,i0 + 1i≠Ict,i,i+1,i0)]

I

i=1
. (A27)

F.4. Final equation system

Collecting the derived equations, and combining them with the remainder of the private equi-
librium conditions (which contain no infinite dimensional objects) and the objective, we can
approximate the infinite dimensional central bank problem by the following finite dimensional
problem

max
{gct ,g0t ,vt ,Ct ,wt ,p∗t ,st ,St ,π∗t }

∞

t=0

∞
∑

t=0
βt (logCt − (

Ct
At
ep
∗

t (−ϵ) (dTt,−εgct + g0t−1) + ηg0t−1))

subject to

wt = Ct,

vt = Πt +Atvt+1 − bt+1ηwt+1,

vt,1 = −ηwt,

vt,I = −ηwt,

0 = Π′t(0) + c
T
t+1vt+1 +

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) ,

gct = Ftgct−1 + ftg
0
t−1,
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g0t = 1 − eTt gct ,

ep
∗

t (ϵ−1) = dTt,1−εg
c
t + g0t .

Here, the choice variables vt and gct are vectors of length I. The rest of the choice variables
are scalars. Note that the choice variables p∗t , st, St,π

∗
t implicitly appear in the problem (inside

the vectors and matrices At, bt, etc.)
As already explained at the beginning of this Appendix, we solve for the FOCs of this system

by symbolic differentiation. The resulting system of FOCs is then solved in the sequence space.
We next explain how we find the steady state, which serves as initial and terminal condition for
dynamic simulations.

F.5. Steady state

To solve for the steady state of the private equilibrium conditions, given a policy π̄, the algorithm
is as follows. We rely on steady-state relationships w = C, and R = (1 + π)/β and π = π∗. We start
with a guess for the real wage w, the optimal rest price p∗, and the bounds of the (S, s) band s
and S then:
a. Compute consumption C = w.
b. Using π = π∗ = π, C and the 4 initial guesses, solve for that stationary value function using the

Bellman equation and the stationary distribution using the law of motion of the distribution.
Both have closed-form solutions given the guesses.

v = (I −A)−1 (Π − bηw) ,

gc = (I − F + feT)
−1
f ,

g0 = 1 − eTgc

c. Compute the residuals of the 4 remaining equations

vt,1 = −ηwt,

vt,I = −ηwt,

0 = Π′t(0) + c
T
t+1vt+1 +

Λt,t+1
σ
(ϕ(

−St+1 − π∗t+1
σ

) −ϕ(
−st+1 − π∗t+1

σ
))(−ηwt+1) ,

ep
∗

t (ϵ−1) = hTt,1−εg
c
t + g0t .

d. Use a Newton method to update the 4 guesses (w, p∗, s, S) and return to step 1, until conver-
gence of the residuals.
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Appendix G. The CalvoPlus model

The setup follows very closely Section 2, so we introduce minimal modifications to the notation.
The menu cost now is a random variable η̃ such that

η̃ =

⎧
⎪⎪
⎨
⎪⎪
⎩

η with prob α

0 with prob 1 −α

so the probability that a price p is adjusted is

Ωt(p) = Pr [η̃ = 0] + Pr [η̃ = η]λt(p) = (1 −α) +αλt(p).

The function λt(p) is the probability of a price change conditional on the menu cost being
η:

λt (p) = 1 [L (p) > 0]

where the difference in value between adjusting and not adjusting the price must be higher
than the menu cost – which is expressed in terms of labor cost:

L (p) =max
p′

Vt (p′) − ηwt − V (p) .

With that, the firm’s value function now is

Vt (p) = Π (p,wt,At)

+αEt [(1 − λt+1 (p − σt+1εt+1 − πt+1))Λt,t+1Vt+1 (p − σεt+1 − πt+1)]

+αEt [λt+1 (p − σt+1εt+1 − πt+1)Λt,t+1 (max
p′

Vt+1 (p′) − ηwt+1)]

+ (1 −α)Et [Λt,t+1 (max
p′

Vt+1 (p′))]

which accounts for the fact that with probability 1 −α the price can be adjusted for free. As the
menu cost is expressed in labor units, the labor market clearing condition in equation (23) in
Section 2 must be modified to

Nt =
Ct
At
∫ ep(−ϵ)gt (p)dp +αη∫ λt (p − σεt − πt) gt−1 (p)dp

such that a share α of firms for which it is worthwhile to incur the menu cost η actually pay it.
Note that now the frequency of price changes is given by

f t = ∫ Φt (p) gt−1 (p)dp = (1 −α) +α∫ λt (p − σεt − πt) gt−1 (p)dp.

The next equation to modify is the law of motion of the price density function:

gt (p) = α (1 − λt (p))∫ gt−1 (p + σεt + πt)dξ (ε)

+δ (p − p∗t )∫ [(1 −α) +αλt ( p̃)] (∫ gt−1 ( p̃ + σεt + πt)dξ (ε))dp̃.
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Summing up, the objective of the Ramsey problem in Section 3.1 now is

max
{gct (⋅), g

0
t ,Vt(⋅),Ct,

wt, p∗t , st,St,π
∗
t }
∞
t=0

∞
∑

t=0
βt (logCt −

Ct
At
(∫ e(x+p

∗

t )(−ϵt)gct (p)dx + g
0
t e
(p∗t )(−ϵ)) − η[g0t − (1 −α)])

subject to

wt = Ct,

Vt (x) = Π (x, p∗t ,wt,At) +α
Λt,t+1
σ
∫

St

st

⎡
⎢
⎢
⎢
⎢
⎣

Vt+1 (x′)ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

dx′ +

+αΛt,t+1
⎛

⎝

1 −
1
σ
∫

St

st
ϕ
⎛

⎝

(x − x′) − π∗t+1
σ

⎞

⎠

dx′
⎞

⎠

[Vt+1 (0) − ηwt+1]

+ (1 −α)V (0) ,

Vt (st) = Vt (0) − ηwt,

Vt (St) = Vt (0) − ηwt,

V ′t (0) = 0,

gct (x) =
α

σ
∫

St−1

st−1
gct−1 (x−1)ϕ(

(x−1 − x) − π∗t
σ

)dx−1 +αg0t−1ϕ(
−x − π∗t

σt
) ,

g0t = 1 − ∫
St

st
gct (x)dx,

1 = ∫ e(x+p
∗

t )(1−ϵ)gct (x)dx + g
0
t e
p∗t (1−ϵ).
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FIGURE A1. This figure schematically explains the linear interpolation with an endogenous grid.
It shows the piece-wise linearly approximated distribution gct(x) at two points in time, t = 1 and
t = 2. The thresholds of the (S, s) band are not symmetric around 0 and differ across time. The
endogenous grid x has I grid points, which are automatically adjusted so that half of the grid
points cover the negative part of the (s,S) band and half of them cover the positive part. In
this illustrative example I = 5 (we use a larger I when solving the model). The adjustment is
obtained by multiplying the auxiliary grid x = [−1,−0.5, 0, 0.5, 1] by ŝt(x): x = xŝt
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FIGURE A2. This figure schematically explains the analytical evaluation of integrals, given the
linear approximation of the distribution and value functions. It shows the piece-wise linearly
approximated distribution gct(x) in blue, the normal pdf ϕ(x) in light blue and the product
of the two gct(x)ϕ(x) in orange, where x = xŝt. The orange area thus corresponds to the term
∑
I−1
i=1 ∫

xi+1
xi

ŝt−1(x′)
σ gct−1(xi < x′ < xi+1)ϕ (h(x′, x))dx′ in equation (A11).

.
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